关于加拿大环境防御环境国防是加拿大领先的环境宣传组织,与政府,工业和个人合作捍卫清洁水,安全的气候和健康社区。已有40多年的历史了,环境防御一直在市政,省和联邦一级工作,以保护我们的淡水,建立宜居的社区,减少加拿大人对有毒化学物质的接触,结束塑料污染,应对气候变化并建立清洁经济。关于ÉquiterreÉquiterre试图使必要的集体过渡向公平且环保的未来更加有形,易于访问和鼓舞人心。自1993年以来,Équiterre一直在帮助找到解决方案,改变社会规范,并通过研究,支持,教育,动员和建立意识的计划来鼓励雄心勃勃的公共政策。这一进展正在帮助建立新的原则,以建立我们如何养活自己,如何围绕以及如何生产和消费,这些原则是为我们的社区设计的,尊重我们的生态系统,符合社会正义,当然还有碳。David Suzuki基金会关于成立于1990年的David Suzuki基金会是一个国家双语非营利组织,总部位于温哥华,并在多伦多和蒙特利尔设有办事处。通过基于证据的研究,教育和政策分析,我们致力于保护和保护自然环境,并帮助创建可持续的加拿大。我们定期与非营利组织和社区组织,所有级别的政府,企业和个人合作。ISBN:978-1-998631-01-8(打印)978-1-998631-02-5(数字)ISBN:978-1-998631-01-8(打印)978-1-998631-02-5(数字)在加拿大环保资助,蜂鸟基金会和能源过渡基金的支持下,该报告成为可能。
伊拉克摩苏尔大学工程学院电气工程系电子邮件:mtyaseen@uomosul.edu.iq(M.T.Y.); aminaalrawy@uomosul.edu.iq(a.a.f.); fawaazyasen@uomosul.edu.iq(F.Y.A。)*通讯作者摘要 - 该论文提出了增加导致道路事故的车辆总数的问题。车辆临时网络(VANET)已在基础设施中开发。本研究建议使用Vanet网络与车辆,路边单元(RSU)和网络服务器进行通信。提出的方法通过基于Omnet ++和Sumo Simulators内部框架(静脉)的地图执行IEEE 802.11p的基本参数来正确模拟Vanet,以实现和模拟车辆路线的规划流量策略。建议的技术的主要优势是使车辆能够相互通信或在基础架构上进行交流,以发送和接收各种类型的警告和信息消息。在本文中做出了两项重大贡献:通过减少车辆的CO 2排放和减少道路拥堵的CO 2来降低空气的污染水平,以及模拟车辆路线计划流量的技术贡献。我们的技术能够监视在高速公路上和紧急制动的情况下测试的空气污染和建筑模拟。每辆车可以通过向网络服务器发送数据包请求并等待包含新路径的响应来请求最短路由。主要的性能参数指标是指在不同时间在不同时间的速度和加速器等车辆中的数据交换。在每种情况下更改路径长度时,分析了车辆的速度,加速度,CO 2发射和RSU的总丢失数据包。在模拟中,使用100辆车在3,400米长的高速公路上以14 km/h的速度行驶,网络尺寸为(3000×3000)m。通过100辆车的旅行时间为300秒,RSU的总丢失的数据包为61,总CO 2排放量为3,1548 gm/英里,获得了仿真结果。模拟结果的优点为预防事故,增强无线基础设施和降低污染水平的车辆提供了更安全的道路。
• Acknowledgments • Executive Summary • Summary of Recommendations o For Government o For Private Sector • Introduction o Scope of Research Implications of Wireless Attacks on 5G Networks and Connected Vehicles o Summarization: Types of Vulnerabilities Potentially Impacting Connected Vehicles and Infrastructure • Main Topics: o Policy Policy and Regulatory Considerations Public-Private Collaboration Trade-Offs Importance Interoperability for 5G-Enabled交通运输投资于STEM和增加人才o风险/脆弱性产品和软件开发o网络安全/网络安全/威胁智能/供应链/供应链网络安全威胁智能和检测供应链安全未来潜在的多模式考虑对高速公路现代化的影响(对高速公路的影响(Aviation Pociped)case consepition(Aviation Pociention)casmigition case copient(II)II•II•II•II•II•附录o缩写
摘要:车辆到网格(V2G)技术已引起了很多关注,作为电动汽车和电网之间的智能互连解决方案。本文通过使用Citespace 6.1.R6软件来构建可视化图,分析了V2G的相关研究进度和热点,其中包括关键字共发生,聚类和爆发性,并进一步地总结了V2G研究的主要趋势和关键结果。首先,概述了电动汽车与电网之间的联系,并强调了V2G技术的潜在优势,例如能源管理,负载平衡和环境可持续性。讨论了V2G的重要主题,包括可再生能源消耗,功耗,网格的调节和优化以及智能电网。本文还强调了V2G技术对电网的积极影响,包括碳排放减少,提高网格可靠性以及对可再生能源整合的支持。还考虑了V2G研究的当前和未来挑战,例如标准化,政策支持和业务模型。本评论为V2G研究中的学者和从业者提供了全面的观点,并有助于更好地了解V2G技术的当前状态和未来趋势。
温室气体(GHG)排放是人类引起的气候变化的直接原因。印度在2019年占29亿吨CO 2排放。运输部门每年约为10%或2.9亿吨CO 2排放。公路运输主要包括重型车辆(公共汽车和卡车),在某种程度上是私人车辆(两轮[2WS]和四个轮子[4WS]),是这些排放的主要贡献者。基于最新趋势,科学,技术与政策研究中心(CSTEP)的最新研究报告说,车辆电气化是遏制车辆温室气体排放的最实际方法,并具有明显抑制城市污染来源的额外好处,包括颗粒物质(PM),氮氧化物(no x)和黑碳(bc)。
摘要:交通运输部门的温室气体 (GHG) 排放及其对空气质量的影响现在已成为主要关注点,而公路货运电气化被视为一种潜在的解决方案。然而,这也带来了挑战,因为仓库电网连接的电力需求增加,而且如果必须升级电网,成本也会增加。本研究旨在评估当一家公司为其车队通电时,引入太阳能电池板 (PV) 和电池储能系统 (BESS) 对成本的影响,这基于两个不同的优先事项。一方面,避免在高峰价格时段使用电网,而要升级电力连接。另一方面,避免任何电力连接升级,而要承担过剩容量费用。这两个优先事项旨在代表物流和商业公司在车队电气化方面面临的现实挑战。优先考虑其中一个而不是另一个的选择可能是由运营要求和/或技术限制驱动的。对于每种方法,使用 MATLAB 和 Simulink 开发不同的能源管理算法。结果表明,当电力连接升级不成障碍时,降低成本的灵活性更高。如果无法升级电网,则必须同时实施光伏电池板和 BESS 的安装以及其他策略(即智能充电),以使其成为经济的选择。
摘要 — 我们正处于联网自动驾驶汽车新时代的开端,它具有前所未有的用户体验、极大改善的道路安全和空气质量、高度多样化的交通环境和用例以及大量先进的应用。实现这一宏伟愿景需要显著增强的车对万物 (V2X) 通信网络,该网络应极其智能,并能够同时支持超快速、超可靠和低延迟的海量信息交换。预计第六代 (6G) 通信系统将满足下一代 V2X 的这些要求。在本文中,我们概述了一系列来自新材料、算法和系统架构等一系列领域的关键支持技术。为了实现真正智能的交通系统,我们设想机器学习将在先进的车辆通信和网络中发挥重要作用。为此,我们概述了机器学习在 6G 车载网络中的最新进展。为了促进该领域的未来研究,我们讨论了这些技术的优势、未决挑战、成熟度和增强领域。
分布式可再生能源 (RES) 的普及率不断提高,加上新型电动汽车 (EV) 型号注册数量不断增加,在零碳能源社区的发展中发挥着重要作用。然而,间歇性可再生能源发电厂的份额越来越大,再加上高且不受控制的电动汽车充电需求总量,要求能源区必须向新的规划和管理模式发展。因此,在这种背景下,本文提出了新颖的智能充电 (SC) 技术,旨在尽可能多地在当地整合 RES 发电和 EV 充电需求,协同作用于电力流并避免对电力系统产生不利影响。为了实现这一点,本文介绍了一种集中式充电管理系统 (CMS),该系统能够单独调节每个插电式电动汽车的充电功率。CMS 旨在最大限度地提高本地 RES 的充电自耗,从而拉平外部电网所需的峰值功率。此外,即使在低 RES 电力可用性条件下,CMS 也能保证所有车辆在出发时的整体充电状态 (SOC) 良好,且无需从电网获取额外能量。本文提出了两种根据 EV 功率流方向而不同的方法。第一种 SC 仅涉及单向功率流,而第二种方法还考虑车辆之间的双向功率流,以车对车 (V2V) 模式运行。最后,根据实际案例研究进行的模拟验证了 SC 对参考场景的影响,该参考场景包括具有光伏 (PV) 电站、非模块化电气负载和 EV 充电站 (CS) 的工业区。本文收集了结果,并比较和详细描述了通过操作不同的 SC 方法实现的性能改进。
本研究 • 我们使用“自下而上”的方法来避免这些问题 • 高级轻型动力系统和混合动力分析 (ALPHA) 工具是一个整车模拟模型 • 我们“扫描”标准轿车的功率和燃油经济性之间的关系 • 通过尽可能保持不变,这可以避免样本选择问题 • 结果特定于该车型,但模式可能更具普遍性 • 扫描的变化: • 5 个不同的车型年份,反映不同的技术年份 • 1980、2007、2013、2016、2025 预计 • 测量关键变量的不同方法 • 性能:马力或 0-60 加速时间 • 燃油经济性:“官方”MPG 或 US06 mpg,旨在代表激进驾驶 • 然后,我们对燃油经济性进行一系列性能回归 • 与现有研究一样,使用恒定弹性和时间段的虚拟变量 • 允许弹性变化以及拦截