网络物理系统和嵌入式设备已成为我们日常生活不可或缺的一部分。物联网(IoT)功能继续提高,并应用于军事,公用事业和医疗保健等技术领域。这些域内数据的关键性需要强大的安全性和完整性。我们的研究提供了对现实世界应用的轻质加密算法ascon的新评估。我们使用位于美国空军学院(USAFA)的IoT环境评估ASCON的影响,我们发现Ascon在应用于MQTT消息协议上以对消息进行加密信息时的预期执行,而无需抑制信息共享,但提供必要的安全性和完整性。我们表明,ASCON与AES的性能度量相媲美,但内存足迹较小。这很重要,因为它转化为需要紧凑系统的更广泛的应用程序和机会。这是对现实世界应用中ASCON的首次评估。
钢材、混凝土、木材、大理石等是世界上的建筑材料 [1]。由于混凝土的工程特性和性能,混凝土是建筑界使用最广泛的建筑材料之一。混凝土由水泥、水、沙子、细骨料和粗骨料混合而成,这些是混凝土的主要原材料。骨料和混合比例会影响混凝土的物理和化学性质,如可加工性、强度、稳定性和耐久性。一般来说,混凝土抗压强度高,抗拉强度低。因此,使用钢材、木材、外加剂、纤维等来提高混凝土的性能。随着建筑材料的快速增长和价格上涨,一些建筑公司已在建筑结构中使用轻质混凝土作为建筑材料。轻质混凝土的密度约为 800 kg/m 3 至 1850 kg/m 3。轻质混凝土分为轻质骨料混凝土、轻质泡沫混凝土 (LFC) 和加气混凝土 (AAC)。轻质混凝土是工业中使用最广泛的类型。
摘要。2016 年,风能占美国所有发电量的 5.6%。大部分发展发生在农村地区,那里的开放空间有利于利用风能,同时也为通用航空机场提供服务。因此,美国近 40% 的风力涡轮机都位于小型机场 10 公里范围内。风力涡轮机通过从大气中提取动量来发电,产生以风速下降和湍流增加为特征的顺风尾流。最近,人们担心涡轮机尾流会对小型飞机造成危害,这被用来限制风电场的发展。在此,我们使用公用事业规模涡轮机尾流的大涡模拟 (LES) 来评估小型飞机的滚动危害。计算假设飞机以各种方向横穿尾流时风产生的升力和随后的滚动力矩。探讨了稳定和中性分层的情况,稳定情况代表了可能的最坏情况,因为较低的环境湍流允许尾流持续更长时间。在这两种情况下,假设飞机在下行尾流和横行尾流横断面过程中经历的滚转力矩中只有 0.001% 会导致滚转风险增加。
摘要。2016 年,风能占美国所有发电量的 5.6%。大部分发展发生在农村地区,那里有利于利用风能的开放空间也为通用航空机场提供服务。因此,美国近 40% 的风力涡轮机都位于小型机场 10 公里范围内。风力涡轮机通过从大气中提取动量来发电,产生以风速不足和湍流增加为特征的顺风尾流。最近,涡轮机尾流对小型飞机构成危险的担忧已被用来限制风电场的发展。在此,我们使用公用事业规模涡轮机尾流的大涡模拟 (LES) 评估小型飞机的滚动危险。计算假设飞机以各种方向横穿尾流时风产生的升力和随后的滚转力矩。探讨了稳定和中性分层的情况,稳定情况代表了可能的最坏情况,因为较低的环境湍流允许更长时间的尾流持续。在这两种情况下,假设飞机在下行尾流和横行尾流横穿过程中经历的滚转力矩中只有 0.001% 会导致滚转风险增加。
摘要。2016 年,风能占美国所有发电量的 5.6%。大部分发展发生在农村地区,那里有利于利用风能的开放空间也为通用航空机场提供服务。因此,美国近 40% 的风力涡轮机都位于小型机场 10 公里范围内。风力涡轮机通过从大气中提取动量来发电,产生以风速不足和湍流增加为特征的顺风尾流。最近,涡轮机尾流对小型飞机构成危险的担忧已被用来限制风电场的发展。在此,我们使用公用事业规模涡轮机尾流的大涡模拟 (LES) 评估小型飞机的滚动危险。计算假设飞机以各种方向横穿尾流时风产生的升力和随后的滚转力矩。探讨了稳定和中性分层的情况,稳定情况代表了可能的最坏情况,因为较低的环境湍流允许更长时间的尾流持续。在这两种情况下,假设飞机在下行尾流和横行尾流横穿过程中经历的滚转力矩中只有 0.001% 会导致滚转风险增加。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过适当的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。