弗莱特纳转子是垂直圆柱体,位于风锋处,根据马格努斯原理工作,取决于风速和风向,从而推动船舶 [1]。我们在一艘集装箱船上安装了四个现代弗莱特纳转子(图 1),其作用是捕获和利用风能,以用于船舶推进。这些转子不是主要的推进来源,但有助于降低燃料消耗,根据船舶大小、航行区域和运行模式,可降低 3% 至 15% 的燃油消耗。这种推进模式仅适用于具有自由甲板的船舶,因为弗莱特纳转子捕获的风锋不能受到干扰。要应用这种额外的推进模式,必须仔细分析所选船舶的特性。使用弗莱特纳转子时,水平面上会出现力,这些力与马格努斯效应相结合,会改变船舶的稳定性,还可能有剪断转子支撑杆的危险。
摘要 为应对气候变化,大多数工业化国家近年来承诺增加可再生能源的份额,以减少温室气体排放。因此,小型光伏 (PV) 系统(主要在住宅应用中)的快速部署开始占据可用发电量的相当大一部分,因此,这些系统的随机性和间歇性影响着集中式发电 (CG) 资源的运行。由于场景复杂性不断提高,越来越多的利益相关者在网络中发挥着积极作用,网络运营商不断改变其短期和长期预测活动的方法。越来越多的客户必须被视为产消者,而不仅仅是消费者。在这种情况下,存储技术被认为是合适的解决方案。这些技术对于解决和填补可再生分布式能源给网络基础设施管理带来的问题是必不可少的。这项工作的目的是创建一个模型,以评估考虑到澳大利亚光伏系统的发电影响,以及一个使用 MATLAB 模拟电池储能系统 (BESS) 和电动汽车未来贡献的模型。用于开发这些模型的方法是基于有关已安装光伏系统和当前存储技术的可用详细信息的统计假设。结果表明,在所有分析的情景中,未来屋顶光伏板的采用和对 CG 的影响都远高于储能系统的使用。因此,对需求的影响将由光伏系统的行为决定。只有在假设的情景中,即 BESS 的安装将达到与光伏系统相当的水平,才有可能更好地管理集中资源。
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 ......................。。9 2.1.1 功率级。。。。。。。。。。。。。。。。。。。。。......10 单端功率级 [21, 22]: .........10 差分功率级 [16, 23]: ......。。。。10 2.1.2 调制。。。。。。。。。。。。。。。。。。。........12 2.1.2.1 脉冲宽度调制 (PWM) .......12 2.1.2.2 差分 D 类放大器的 PWM ......14 二元调制: ..................14 三元调制: ....................15 2.1.2.3 自激振荡调制 ........。。。。。。。。16 2.2 D 类放大器的 EM 发射 ...................18 2.2.1 输出轨的 EMI ......................18 2.2.2 供电轨处的 EMI .......。。。。。。。。。。。。。。。20 2.2.3 EMC 解决方案。。。。。。。。..................22 2.3 表征 D 类放大器 .....。。。。。。。。。。。。。。24
B.1 公式(3.5)的证明 ........................135 B.2 公式(3.8)的证明 .......................136 B.3 公式 (3.9) 的证明 ......................137 B.4 公式 (3.11) 的证明 .............。。。。。。。。139