从一开始,我们通过皇家儿童医院和幼儿干预服务获得了惊人的支持。随着年龄的增长,由于他的导电性听力损失和认知能力,他在主流运动中挣扎。当有机会参加特奥会的志愿者的机会出现时,我抓住了机会更多地了解支持残疾运动员在运动中壮成长的社区。这是我第一次遇到Nability,并想参与创建这种支持性环境,在这种环境中,残疾人也可以在NAB上蓬勃发展。
导电迹线和嵌入式电子产品 - 增材制造领域正在展开一场军备竞赛,以 3D 打印各种应用的导电迹线。这种能力将彻底改变电子产品和部件的零件设计和组装,这已不是什么秘密。从历史上看,挑战在于导电性和均匀性。通过与美国空军合作,Impossible Objects 正在开发一种打印导电迹线的新方法,并为嵌入式电子产品制定指导方针。这为具有预测性产品健康监测系统的智能产品铺平了道路。
过渡金属基电极材料具有大的比表面积和多孔结构,可以为氧化还原反应暴露更多的电活性位点,并提供电极和电解质之间的大接触面积。18-20多级多孔纳米结构不仅提供更多的活性位点,而且还提供快速的电极/电解质相互作用和离子传输/电子交换,从而提高功率密度和倍率能力。21,22此外,基于对电荷存储机制的理解,探索了多价金属阳离子之间的协同效应。复合材料的组成协同作用可以使电极中的离子和电荷轻松转移,从而确保更丰富的氧化还原反应。 22 – 25此外,人们付出了巨大的努力来设计各种三元和四元过渡金属基电极,这些电极已被证明与单金属氧化物相比具有金属导电性、更丰富的氧化还原反应位点和电化学稳定性等显著优势。26 – 30最后,粉末状电极材料机械不稳定,其电导率通常太低,无法快速充电 – 放电。由于电解质扩散到电极中的距离短,只有材料表面对总电容有有效贡献。设计无添加剂的电极材料,直接在导电多孔基底上生长(如泡沫镍),不仅可以提高导电性和电极中电解质的丰富度,还可以提高电极的稳定性。
复合聚合物陶瓷电解质结合了聚合物和陶瓷的优点,在高能量密度锂金属电池中表现出了巨大的潜力。然而,低离子电导率和与电极的接触不良限制了它们的实际应用。在这项研究中,我们开发了一种高导电性和稳定性的复合电解质,该电解质具有高陶瓷负载量,可用于高能量密度锂金属电池。该电解质通过原位聚合生产,由聚偏氟乙烯/陶瓷基质中的一种名为聚-1,3-二氧戊环的聚合物组成,具有出色的室温离子电导率(1.2 mS cm − 1),并且在 1500 小时内与锂金属具有高稳定性。在 Li|电解质|LiFePO 4 电池中测试时,该电解质在室温下具有出色的循环性能和倍率能力,在 1 C 下 500 次循环后的放电容量为 137 mAh g −1。此外,该电解质不仅表现出 0.76 的高 Li + 迁移数,而且显着降低了与电极的接触电阻(从 157.8 降至 2.1 𝛀)。当在具有高压 LiNi 0.8 Mn 0.1 Co 0.1 O 2 正极的电池中使用时,可实现 140 mAh g −1 的放电容量。这些结果展示了复合聚合物陶瓷电解质在室温固态锂金属电池中的潜力,并提供了设计具有电极兼容界面的高导电性陶瓷内聚合物电解质的策略。
摘要响应于对各种工业过程中对更有效传热技术的需求不断增长的需求,纳米流体的发展已成为一种有希望的解决方案。与固体相比,传统的传热液(例如矿物油,乙二醇和水)的热导电性相对较低,从而限制了热交换器的紧凑性和效率。纳米流体是通过在碱流体中悬浮超铁金属或非金属固体粉末而产生的,由于固体材料的较高导电性,其热性能增强。本文回顾了纳米流体的制备,导热率测量和影响因子,重点是导热率,作为改善热传递的主要驱动力。纳米流体的制备涉及一步或两步方法,而两步方法更常用于氧化物纳米颗粒(NPS),例如Al2O3,ZnO,MGO,MGO,TIO2和SIO2。该研究讨论了超声处理和磁力搅动等稳定技术,以确保纳米流体的均匀悬架和长期稳定性。使用短热线(SHW)和瞬态热线(THW)技术进行热导率测量,并考虑了非稳态的性质和潜在的误差源。这项研究强调了严格的实验设计和准确的数据分析的重要性,以解决热导率测量的复杂性和可变性,最终有助于纳米流体技术在有效传热溶液中的发展。关键字:纳米流体,热有限,纳米颗粒,纳米流体的稳定性1。引言不断增长的热流和快速收缩,导致选择了越来越多的有效传热技术。矿物油,乙二醇和水是许多工业过程中不断需要的传热液的例子,包括生产微电子产品,发电,化学反应以及加热和冷却。与大多数固体相比,这些常见流体的低热传递特性是热交换器高紧凑性和效率的关键障碍之一。增加工作培养基的热导电性的一种创造性方法是悬挂普通流体中的超铁金属或非金属固体粉末,因为大多数固体材料都比液体具有优越的导热性。如今,“纳米流体”一词在热传输领域非常明显。的热品质,包括粘度,特定热量,对流传热系数和临界热流,已成为几项研究的主题。
红外辐射是由导带和价带中电子和空穴的辐射复合产生的。因此,发射光子能量与带隙能量 E g 密切相关。发射波长可根据公式 (μm) = 1.240/Eg (eV) 计算。内部效率取决于能带结构、掺杂材料和掺杂水平。直接带隙材料提供高效率,因为电子和空穴的复合不需要声子。GaAs 是直接带隙材料,而 Ga 1-X Al X As 在 X = 0.44 之前是直接带隙材料。掺杂物质 Si 提供最佳效率,并且通常会将低于带隙能量的发射波长移入红外光谱范围约 50 nm。电荷载流子通过 pn 结注入材料。在 GaAs 和 Ga 1-X Al X As 中很容易形成高注入效率的结。价数为二的金属(例如 Zn 和 Mg)可获得 p 型导电性,价数为六的元素(例如 S、Se 和 Te)可获得 n 型导电性。但是,价数为四的硅可占据 III 价和 V 价原子的位置,因此可充当施主和受主。导电类型主要取决于材料生长温度。通过采用精确的温度控制,可在结的两侧生长具有相同掺杂物质 Si 的 pn 结。另一方面,Ge 的价数也是四,但在高温下占据 V 族位置,即 p 型。
DOI:https://dx.doi.org/10.30919/es8d588 纤维素/碳纳米管复合柔性电极在超级电容器中的研究进展 孙哲1 齐厚娟1 陈曼慧1 郭斯通1 黄占华1,* Srihari Maganti2 Vignesh Murugadoss3 黄米娜2,3 郭占虎2,* 摘要 如今,对可穿戴、便携、可折叠的小型电子产品和人机交互界面设备的需求日益增加。因此,超级电容器由于其能量/功率密度高、充放电过程快、循环寿命长等优点,作为储能装置得到了广泛的研究。其中柔性电极材料是提升超级电容器性能的关键成分。纤维素作为一种天然柔性材料,具有成本低、来源广泛、可再生、机械性能强等特点,被用作电极的柔性基底或模板。为了提高纤维素基柔性电极的导电性和优异的电化学性能,将具有高导电性、良好的热稳定性和化学稳定性以及独特内部结构的碳纳米管(CNT)集成到纤维素基柔性电极中,制备出具有高能量/功率密度和长循环寿命性能的柔性超级电容器用纤维素/CNT基柔性电极。本文主要针对纤维素/CNT进行综述,着重总结了用于超级电容器的纤维素/CNT基复合柔性电极的组成、制备和机理,并讨论了纤维素/CNT基复合柔性电极目前面临的挑战和前景。
除了传统能源之外,铜铍合金和氧化铍陶瓷在太阳能光伏电池的两大主导技术中越来越受到青睐。在薄膜太阳能领域,铍合金在连接太阳能电池板的导电端子时具有出色的热管理、导电性和强度。在替代聚光光伏 (CPV) 技术中,氧化铍陶瓷的卓越热管理性能使电池能够在非常高的太阳能浓度下运行,已经达到太阳强度的 1,000 倍,同时仍能保持 CpV 电池的精密电子元件冷却,这是在阳光充足的地区向电网添加太阳能的关键因素。
o 汽车、船舶、风车叶片、浴缸和淋浴器、医疗设备、建筑结构、储罐 o 航天器、飞机、直升机、防弹衣、假脚、能源应用、先进汽车和非结构应用(传热、导电性) • FRP 行业(树脂制造商、玻璃纤维制造商、制造机器制造商和制造车间)。 • 讨论先进材料行业(主要航空航天公司、主要零件供应商、次要零件供应商、工具供应商、制造机器制造商、生产材料供应商、纤维制造商、树脂制造商、预浸料公司、核心材料制造商、纤维编织商和预制件制造商)。