搜索与γ +射流最终状态的事件中的共振,已通过LHC的CMS实验在√s= 13 TEV时收集的质子 - 蛋白质碰撞数据进行了搜索。分析的总数据对应于138 fb -1的集成光度。被考虑的激发夸克和量子黑洞的模型。使用候选射流的射流重建,在数据中测得的γ +喷射质量谱是在标准模型连续性背景上存在共振的。背景是通过与功能形式拟合的质量分布来估计的。数据与指定的标准模型背景没有统计学上的显着偏差。在共振质量和其他参数上以95%置信度的排除限制设置。激发的光味夸克(激发的底部夸克)被排除在6.0(3.8)TEV的质量中。在Arkani Hamed-Dimopoulos-dvali(Randall-Sundrum)模型中,排除了高达7.5(5.2)TEV的质量黑洞的量子。这些较低的质量边界是迄今为止在γ +射流最终状态中获得的最严格的。
摘要我们的电网中可再生能源的快速增加促使人们需要储能系统来减轻间歇性可再生能源的影响。可再生能源(例如光伏电池)的耦合会导致由于两个系统通过接线互连而导致的空间和效率损失。通过一种称为太阳能流量电池的技术,将太阳能发电与能源储存相结合的潜在方法。这些电池利用染料敏化的太阳能电池来帮助电池充电过程。在此项目中,详细介绍了用于在太阳能流中使用用于使用的工作光轴的方法。通过极化测试和SEM成像制造并测试了光射道,分别确定电气和表面特性。显示了最大功率输出〜0.1 mW/cm 2的光阳极样品,但也通过填充因子值在30-40%的填充因子值中表现出高度的单层太阳能电池性能。然后将进一步的工作在途径上进行详细探索,以详细探讨通过详细介绍的过程中制造的光射流的低性能值。
抽象的喷射淬灭,当Parton Cascade发生在介质内时,QCD射流的性质的修改是一种本质上的量子过程,其中颜色相干效应起着至关重要的作用。尽管在过去几年中取得了很大的进步,但对蒙特卡洛·帕顿(Monte Carlo Parton)阵雨的模拟仍然无法访问。在这种情况下,值得尝试替代配方,量子计算中的快速发展提供了一个非常有希望的方向。本文的目的是引入一种策略,以模拟单个粒子动量扩展,这是射流淬火的最简单构件。动量拓宽是由于与基础培养基相互作用的夸克或Gluon横向妈妈的修改,以QCD背景字段建模。在我们在这里考虑的αS中的最低顺序,动量扩大不涉及parton分裂和粒子数量保守,从而大大简化了量子算法的实现。但是,此数量与RHIC,LHC或未来EIC的现象学非常相关。
摘要:开发了一种计算机视觉算法,以确定以5-10 m/s范围内以速度行驶的水气体混合物的两相湍流射流的参数,以评估实时质量交换设备的流体动力效率,并预测汽油汇率。该算法基于阈值分割,主动轮廓方法,主成分方法的回归和特征叠加层的比较,这可以稳定地确定喷气边界,并且在使用低质量数据时是一种比传统的方法更有效的方法。基于喷气机的高速视频记录,提出的算法允许计算Jet的关键特征:速度,入射角,结构密度等。讨论了算法的描述和基于在喷气生物反应器的实验原型上创建的真实喷气机的视频记录的测试应用程序。将结果与计算流体动力学建模和理论预测进行了比较,并证明了良好的一致性。提出的算法本身代表了喷气生物反应器中曝气器操作的实时控制系统的基础,并在实验室喷射流安装中使用,用于积累有关JET的结构和动态性能的大数据。
本文致力于开发一个数值模型,用于对具有施加运动的二维 (2D) 和轴对称物体进行水冲击。这项工作是实施用于分析飞机迫降的 2D+t 程序的第一步。在假设流体为无粘性和不可压缩流体的情况下研究该问题,该流体由具有自由表面完全非线性边界条件的势流模型建模。通过边界元法对具有自由表面的非稳定边界值问题进行数值求解,并与简化的有限元法相结合以描述射流的最薄部分。这项研究旨在描述进入和退出阶段。开发了特定的数值解来解决退出阶段并提高模型的稳定性。结果以自由表面形状、压力分布和作用于撞击体的流体动力载荷的形式呈现。该模型用于研究 2D 楔形体和轴对称锥体的进水和出水,文献中提供了相关数值或实验结果。数值研究表明,所提出的模型可以准确模拟进入和退出阶段。对于退出阶段,结果表明,所提出的模型是完全非线性的,与简化(分析)方法相比,它可以更好地预测负载和浸湿面积。重力的影响通常被忽略
本文介绍并解释了在伤口净化过程中用电化学方法增强等离子活化水凝胶疗法 (PAHT) 抗菌作用的原理。该过程涉及在用氦 (He) 等离子射流治疗期间接地和水合聚乙烯醇 (PVA) 水凝胶薄膜。这在电化学上增强了过氧化氢 (H 2 O 2 ) 的产生,过氧化氢是 PVA 水凝胶中产生的主要抗菌剂。研究表明,通过电子解离反应以及与激发态物质、亚稳态和紫外 (UV) 光解相关的反应,H 2 O 2 的产生在电学上得到增强。通过等离子射流的氦流使 PVA 水凝胶脱水,在化学上增强了 H 2 O 2 的产生,这为与 H 2 O 2 产生相关的电化学依赖反应提供了能量。电化学过程在 PVA 水凝胶中产生了前所未有的 3.4 mM 的 H 2 O 2。该方法还增强了其他分子(如活性氮物质 (RNS))的产生。电化学增强的 PAHT 可高效消灭常见的伤口病原体大肠杆菌和铜绿假单胞菌,对金黄色葡萄球菌有轻微效果。总体而言,这项研究表明,新型 PAHT 敷料为控制感染和促进伤口愈合提供了一种有希望的抗生素和银基敷料替代品。
近年来,随着可再生能源的快速发展,储能系统在电力系统中发挥着越来越重要的作用。储能技术是利用新型清洁能源的关键技术。目前,储能技术主要由化学储能、电化学储能、热质量储能以及储能系统集成与安全组成(如图1所示),这些技术都对热管理和热安全提出了长期挑战。随着储能技术的进步,其安全性特别是热安全性受到广泛关注。有效管理储能系统中的热量,确保其安全运行成为当前研究和应用的热点。本期以此为基础,探讨储能、热安全与管理领域的新技术发展,共包含6篇文章。在环保排放标准和能源危机的驱动下,氢能已成为零碳清洁能源(Zou等,2023)。近年来,燃料电池汽车(FCV)成为未来汽车产业发展的重要焦点,加氢站在氢能技术融入日常交通中扮演着至关重要的角色(Miao et al.,2024)。尽管取得了这些进展,但氢气密度低导致泄漏时扩散迅速,在储存、运输和使用过程中存在火灾、爆炸等重大安全风险。这些问题阻碍了全球氢能应用的普及和相关基础设施的发展(Wang et al.,2022)。尽管已经有大量研究关注氢气泄漏在各种环境中的扩散特性,但大多数研究集中在开放空间。在封闭空间(如天花板)中,明显缺乏关于氢气泄漏扩散的可靠数据。此外,虽然先前对自由射流的研究已经确定了特定的模式,但对封闭空间的研究通常提供了广泛的数据。