为展示小型持有人采购模型的商业和发展潜力,CASA专注于埃塞俄比亚,马拉维,尼泊尔和卢旺达农业领域的催化干预措施,这些干预措施支持Agri-smes准备和安全投资,同时将小型持有人连接到商业市场。CASA在研究和沟通方面的工作是围绕确定限制,机会和通过研究解决证据差距的构建;塑造有关小农农业的辩论,以影响投资者,政府和捐助者的行动;并通过事件和利益相关者参与创造网络机会。2. Partner简介背景Agrah Care Company Ltd(AC)自2011年以来在卢旺达合法注册,由Jeanne d'Arc Nyiraruyonga夫人拥有,在Muhanga,Musanze和Gatsibo地区经营三家农业投入商店。这些商店为8,250名农民和72名农业经销商提供种子,化肥,农药,设备和延期服务。公司生产和出售幼苗,并向农民提供推广服务和贷款。它与300名小型农民合作,为当地市场,特别是在基加利(Kigali)生产蔬菜。AC的基础设施,由美国国际开发署资助的项目支持,包括一家农业投入店,兽医商店,仓库,肥料和农药存储,以及Gatsibo的农民服务中心(FSC),农民在那里接受良好农业实践和农业培训的培训。该公司雇用了24名农艺师,最近开始生产有机生物量的肥料,从食物浪费中降低农业成本。3.分配背景CASA和Agrah护理之间的伙伴关系旨在通过与2500名小型农民互动,通过实施标题为“基于国内市场的合同农业蔬菜生产的项目”来为AC的业务扩展提供技术援助(TA)。目标是提高AC的供应能力并满足基加利蔬菜对蔬菜的不断增长。Swisscontact卢旺达通过其CASA项目正在寻找专家,以协助制定Agrah Care的全面和战略性商业计划。作为旨在与小农户扩展和合作的农业综合企业,该业务计划将成为决策,增长和长期可持续性的指导文件。它将描述并介绍愿景和使命,指导公司的增长,战略决策,吸引投资和融资,运营效率,市场分析和定位,管理与小型农民和其他业务合作伙伴的关系,
摘要:本文旨在评估坦桑尼亚MBEYA地区肥料补贴系统的效率和可靠性,同时探索区块链技术在推动这些系统增强功能方面的作用。该研究介绍了基于区块链的电子凭证系统,作为针对这些挑战的创新解决方案,提供了一个强大的框架,该框架结合了建筑设计和算法解决方案,以提高分配过程中的效率。调查结果在解决确定的挑战方面表现出重大改进,包括简化的申请处理,凭证发行和赎回,报销程序以及提高透明度和透明度。所提出的混合体系结构集成了结构良好的算法,以提高运营效率并确保更安全,更公平的分配系统。这些发现强调了对提高农业生产力和粮食安全的新方法的迫切需求,提倡在农业部门内广泛采用区块链技术。doi:https://dx.doi.org/10.4314/jasem.v29i1.11许可证:CC-BY-4.0开放访问政策:Jasem发表的所有文章都是开放式访问的文章,并且可以免费下载,复制,重新分配,repost,repost,翻译,翻译,翻译和阅读。版权策略:©2025。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。引用本文为:Mbita,O。d; Nicholaus,M。R; Twahir,R。K.(2025)。J. Appl。SCI。 环境。SCI。环境。评估肥料补贴系统的效率和可靠性:区块链在坦桑尼亚推动增强方面的作用。管理。29(1)79-84日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月28日;发布:2025年1月31日关键字:电子凭证;补贴肥料;区块链技术;凭证系统;补贴系统肥料在现代农业中至关重要,因为它可以增强土壤生育能力并显着提高作物产量(Lameck等,2019)。随着全球粮食需求的增加,确保肥料的可用性和适当的分配对于维持农业生产力至关重要,尤其是在粮食安全至关重要的地区(SDG.17 UN,2015年)。以其主要是农业经济体,撒哈拉以南非洲在实现这些目标方面面临着独特的挑战,这主要是由于对小农的社会经济限制(Malhi等,2021)。然而,撒哈拉以南非洲的肥料,特别是在坦桑尼亚,仍然是重要的
Sravani Gogisetty,Mihira Kumara Mishra和Prabhat Ranjan Mishra摘要生物学世界由真菌的多样性和复杂性以及无与伦比的自然美所占据主导地位。各种微生物,包括丝状真菌,细菌和酵母菌,栖息在复杂的陆地生态系统中,称为叶斑铂,在植物叶的表面上发现。在叶子表面生长的霉菌称为phylloplane真菌。内生真菌经常在植物组织空间中无知地生活。在某个宿主植物中,它们会在细胞内或细胞间发育,以完成其生命周期的全部或一部分。他们被发现与在自然环境中生长的每种植物几乎都相连。,由于它们在植物的生存中的关键功能,因此他们被选为在整个进化过程中与宿主共同发展。传统的压力治疗方法一直以化学物质的使用为中心,由于化学物质的使用,由于其挥之不去的毒性,这种方法被证明是环境有害的。,由于它们是如此安全地使用,因此在科学界,生物学方法变得越来越受欢迎。作物植物植物植物是非致病微生物的重要来源,其中一些生物在治疗细菌和真菌感染方面表现出了有效性。使用琼脂板和湿室技术,从Arhar Cajanus Cajan的健康叶子中分离出了从9种不同属的14种真菌物种。关键字:Arhar,内生菌,霉菌,Phylloplane简介Cajanus Cajan(L。)通常被称为Pigeon Pea,Arhar,Red Gram或tur是亚洲和非洲半干旱热带地区的重要食用豆类(Kumar Cv等,2015,2015年)[11] [11]。在各种环境中,它在全球475万英亩(Choudhary AK等,2014)[5]上生长。它填补了小农雨养农民的可持续农业方法中的关键空隙。它在印度雨林农业中占有重要地位。这是该国各种农业生态学的重要组成部分,通常与谷物,豆类,油籽和小米相互互动。这是鹰嘴豆后的第二大脉冲作物,面积超过442万公顷(HA),输出为2.86吨或所有脉搏产生的16%,产量约为707 kg/ha。以及各种鸽子豌豆植物组件的多种用途,它主要被消耗为全国干燥的Dhal。在印度,大多数人口是素食主义者,提高农作物的生产力尤为重要,因为它有助于打击蛋白质缺乏症(Kumar Cv等,2015)[11]。由于必需氨基酸的免费性质,当小麦或大米与红克结合时,生物学值显着增加。核黄素,赖氨酸,烟酸,铁和硫胺素特别丰富。此外,众所周知,通过以每公顷40 kg的速度固定氮,并释放土壤结合的磷(Choudhary Ak等,2014)
在对气候变化的原因和政策关注的背景下,各种参与者现在热衷于证明农业碳融资如何帮助获得撒哈拉以南非洲农业的多种利益或“三重胜利”。这些示威活动的目标领域具有复杂的社会历史,包括试图解决贫困和环境问题的先前捐助者干预措施。农业碳融资,具有相关的全球框架叙事和利益,在这些干预措施和现有社会文化背景以及地方和国家政策过程的背面到达,以改善生计和生态。本文借鉴了肯尼亚农业碳项目(KACP)的证据,从经验上探讨了这一相互作用。KACP是非洲农业碳融资的第一个世界银行支持项目,自2008年以来一直与肯尼亚西部的小型持有人合作。 实地调查,访谈和文档分析表明,强大的捐助者科学网络如何建立围绕“三重胜利”的主导叙述,这在当地情况下并不能使您产生良好的共鸣。 农民通过玉米耕种与粮食安全有关,只关注玉米生产的一种“胜利” - 对气候弹性或碳收入的认识很少或关注。 另一方面,肯尼亚政府面临着一个隐含的困境,即是否将农业机械化为快速解决饥饿或接受碳金融保护农业的快速解决方案。KACP是非洲农业碳融资的第一个世界银行支持项目,自2008年以来一直与肯尼亚西部的小型持有人合作。实地调查,访谈和文档分析表明,强大的捐助者科学网络如何建立围绕“三重胜利”的主导叙述,这在当地情况下并不能使您产生良好的共鸣。农民通过玉米耕种与粮食安全有关,只关注玉米生产的一种“胜利” - 对气候弹性或碳收入的认识很少或关注。另一方面,肯尼亚政府面临着一个隐含的困境,即是否将农业机械化为快速解决饥饿或接受碳金融保护农业的快速解决方案。作为更强大,资源和科学赋予的全球和项目发展机构相交,相当混乱,非正式和复杂的本地机构,并没有整洁地展现出计划中的“农业碳项目”,但是各种参与者都可以从中受益,而是从哪些农民中受益,但某些农民都会受益。因此,本文证明需要超越自上而下的捐助者和科学驱动的农业碳融资投影。方法和相关的能力建设需求,以便更充分地告知农民可持续农业实践与碳之间的联系;澄清其碳权利,并参与更广泛的开发问题,例如水上访问和确保对碳项目严重影响的土地任期。如果小农要在气候变化和不确定的碳货币承诺的背景下更加有能力扩大机会和福祉,这将是至关重要的。
摘要 — 印度尼西亚是世界第二大椰子生产国,其产品之一是椰果,椰果由椰子水通过发酵工艺加工而成。椰果是生物纤维素的一种来源,可用作高级隔音材料的原料。本研究的目的是确定生物纤维素椰果的干燥工艺,以用于隔音的潜在应用,并通过测试水分含量和扫描电子显微镜 (SEM) 分析形成的纤维素纤维。干燥过程在 (95 -100) o C 的温度下进行。在干燥的前 10 分钟内,椰果中遗忘的水蒸气似乎几乎是总水分含量的 ± (30-40)%,即游离水。这是因为椰果样品中所含的游离水含量仍然很大且容易释放,而在干燥的最后阶段,蒸发水分需要很长时间,因为它是结合水。干燥一直进行到获得恒定质量。本研究中平衡含水量 (Me) 的值采用亨德森方程,计算得出的值为 16.430828706902。在干燥结果中发现,干燥产生的生物纤维素椰果含有少量水分,真菌生长的可能性越来越小,从形态学上看生物纤维素可以用作隔音材料,因为它有孔隙和凹痕来容纳传入的声能,因此隔音应用的潜力很大。关键词:椰果、生物纤维素、隔音、吸音系数。1. 引言印度尼西亚是世界上第二大椰子生产国,椰子种植面积为 388 万公顷,如果使用比例为 97%(小农庄园),椰子产量最多可达 320 万吨。 34 年来,椰子种植园从 1980 年的 166 万公顷增加到 2017 年的 389 万公顷(工业部,2010 年)。与斯里兰卡和印度相比,印尼的椰子生产力仍然较低。无论是出口还是国内市场,对椰子制品的需求都在持续增长。椰子衍生产业可以通过多样化加工产品来发展,包括椰果、椰干、初榨油、油脂化学品和椰干。椰果的主要产品除了作为出口材料外,还可以通过多样化椰果衍生产品来利用其他潜力。将椰果中所含的生物纤维素用于生物片材、生物纤维素面膜、生物纤维纸浆和生物纤维粉,为产品多样化和增加出口提供了机会。目前,有很多向发达国家出口生物片材产品、生物纤维素面膜、生物纤维纸浆和生物纤维粉的需求 [10]。生物纤维素是一种由微生物发酵椰子水产生的多糖。椰果或其他使用微生物木醋杆菌的材料,如果将其放入在受控过程中富含氮和碳的椰子水中,它将能够形成椰果纤维。在这种情况下,细菌会产生酶,可以将糖排列成纤维素纤维链。在椰子水中生长的众多微生物中,成千上万的
执行总结综合非洲农业发展计划(CAADP)一直是自2003年以来马普托宣言以来,它是转变非洲农业的关键框架。在《马普托宣言》中,非洲国家负责人承诺将至少10%的公共支出分配给农业,以实现农业总生产总值(GDP)的年增长率6%。2014年的马拉博·卡德普(Malabo CAADP)宣言加强了这些承诺,并增加了更雄心勃勃的目标和目标,可以在2025年实现,包括消除饥饿,使贫困减半,三倍的非洲农业农业贸易和建筑恢复能力。但是,第4个CAADP双年期审查报告揭示了进展不足,该报告于2024年2月提交给AU大会。国家和政府负责人承认,到2025年,该大陆未达到达到马拉博的目标和目标,强调了在接下来的CAADP十年中(20255-2035)建立重点,以建立弹性,包容和可持续的Agrifood Systems建立弹性,包容和可持续的Agrifood系统的紧迫性。要塑造非洲的马拉博后CAADP议程,了解将在未来十年内影响农业系统的关键驱动因素和趋势至关重要。快速的城市化,将食品消费方式转移到即食餐点上,以及由于经济增长而对多样化,高质量产品的需求不断增长,而不断增长的中产阶级正在推动农业价值链。这些驱动因素强调了对支持加工行业作为农民与不断扩大市场的关键联系的政策的需求。在原则的指导下同样至关重要的是通过赋予构成农业劳动力的很大一部分的妇女的能力来解决性别动态,以提高生产力,粮食和营养安全以及经济韧性。非洲的年轻人口为农业创新提供了巨大的潜力。通过改进的培训,获得生产力的投入,基础设施和数字技术来吸引年轻人,可以将他们整合到价值链中并提高生产率。政策还必须专注于使小农进入市场,贸易便利和遵守可持续性标准的机会。利用矿产收入来资助CAADP倡议可以进一步支持增值,市场脆弱性和自适应策略的干预措施,从而确保整个非洲农业型农业制度的可持续增长。CAADP战略与行动计划(2026-2035)设想了可持续且有弹性的农业型系统,适用于健康,繁荣的非洲。与2063年议程(非洲食品系统上的共同立场和COP28在食品系统上的承诺)相一致,它提倡从生产到消费的整个农业生物价值链的变革性,整体方法。该战略融合了经济,社会和环境方面,以增强粮食安全,改善营养并促进农业可持续性,同时着重于增强机构能力,利用技术和通过增值活动和农业工业化来创造就业机会并改善生活和改善生活。
气候变化、流行病和地缘政治冲突的汇聚不断给粮食、水、材料和能源等重要资源造成压力,使农业系统面临巨大风险(Galanakis 等人,2022 年;Farooq 等人,2022 年;Saxena 等人,2018 年)。新冠肺炎等全球危机暴露了全球粮食系统的脆弱性,强调需要通过让所有利益相关者参与的多层次方法提高复原力(Alam 等人,2023 年;Boyac ι-Gündüz 等人,2021 年)。自 2022 年以来,俄罗斯-乌克兰战争等冲突扰乱了全球化肥和农产品市场,加剧了粮食不安全状况(Esfandabadi 等人,2022 年;粮农组织,2022a、b)。这些干扰导致粮食价格上涨,粮食获取减少,尤其是在低收入、缺粮国家(粮农组织等,2024 年)。与此同时,粮食浪费仍然是一个全球性问题:2022 年,消费者可获得粮食的 19% 被浪费,其中拉丁美洲和加勒比地区占 6% [联合国环境规划署 (UNEP),2024 年]。经济冲击和极端天气事件进一步加剧了脆弱性 [联合国环境规划署 (UNEP),2024 年]。在拉丁美洲和加勒比地区,小农户是农业经济的支柱,这些挑战尤为严峻,但这些农民用来缓解这些挑战的策略仍未得到充分探索(Galanakis,2023 年)。小农户对全球粮食安全至关重要。然而,环境、经济和社会干扰加剧了他们的脆弱性,导致大量粮食损失 [粮农组织,2019 年;联合国环境规划署 (UNEP),2021 年]。祖传的农业实践世代相传,将可持续资源管理与文化价值观相结合,成为替代解决方案。这些做法增强了对气候变化和环境退化的适应力,同时确保了生态、文化和社会的可持续性(粮农组织,2023 年)。然而,仅靠这些传统方法不足以解决现代粮食系统的复杂性。将祖先知识与现代技术相结合的混合模式可以在提高生产力、资源效率和适应力的同时保留文化优势(粮农组织,nd)。这凸显了转变粮食系统以实现更大的可持续性和适应力的迫切需要(Galanakis 等人,2021 年;Seekell 等人,2017 年)。生产和消费的循环经济 (CE) 模式提供了一条有希望的途径(Weetman,2019 年)。转型粮食供应链 (FSC) 以降低波动性和增强韧性对于传统和过渡性粮食供应链尤为重要,因为这些供应链受外部冲击的影响尤为严重 (粮农组织等,2024 年;Galanakis,2023 年)。尽管对更广泛的粮食损失挑战和 CE 模型进行了广泛的研究,在理解小农如何整合弹性、循环和可持续的实践以减少粮食损失方面仍然存在巨大差距,特别是让 FSC 的所有利益相关者参与其中(Ume 等人,2023 年;Boyac ι-Gündüz 等人,2021 年;Devereux 等人,2020 年)。这种差距在秘鲁等农业实践深深植根于当地传统的国家尤为明显。
Vivekanand P Patil 和 Mahendran 摘要 卡纳塔克邦以玉米生产和工业葡萄糖提取而闻名。这两个地区在北部和南部地区相互联系,很容易获得有关完整供应链的完整信息。共选取 280 个样本进行调查,其中包括 120 名玉米农民、60 名佣金代理商、60 名贸易商、20 名加工单位和 20 名买家。玉米的供应链从农民开始,然后连接到佣金代理商,接着是贸易商、加工单位和买家。佣金代理商在连接玉米农民和贸易商销售产品方面发挥着非常重要的积极作用。根据上述渠道计算出的价差表明,玉米的价差为 927.15 卢比/季和 739.54 卢比/季。北卡纳塔克邦和南卡纳塔克邦供应链的技术效率和规模效率 北卡纳塔克邦和南卡纳塔克邦玉米供应链的平均技术效率分别为 81.00% 到 97.20% 和 92.70% 到 85.70%。南卡纳塔克邦玉米供应链的技术效率更高,因为南卡纳塔克邦的电子招标市场表现良好,同时提高了对质量、供应可靠性和价格稳定性的控制。这种模式的另一个优点是,它为农民和佣金代理商提供了灵活性和更好的理解,以实现增值,例如干燥和更好的包装,减少浪费,加工单位的灵活性更高,从而改善了供应链实践。 关键词:印度芥末,路径系数分析 介绍 供应链管理 衡量供应链成功的真正标准是整个供应链中的活动协调得如何好,从而为消费者创造价值,同时提高供应链中每个环节的盈利能力。供应链管理 (SCM) 是“对向消费者提供所需产品的整个生产、分销和营销流程的管理”。供应链管理是为最终用户或最终消费者创造价值的综合过程。它是一种将产品或服务生命周期中的所有活动(从最早的原材料来源到最终消费者再到处置)整合在一起的理念。绘制供应链是供应链管理的第一步,包括绘制供应链中的参与者(承担特定目标的人)以及原材料从玉米农民到买家的流动情况。玉米供应链玉米供应链中的主要利益相关者如下:乡村聚合商/贸易商:他们在玉米供应链中发挥着重要作用,因为他们在生产点即村庄开展业务。在某些情况下,一些农民自己也充当乡村聚合商,他们从小农户手中收购玉米,然后通过佣金代理或直接卖给大贸易商,具体取决于该地区可交易玉米的数量。由于村级集运商距离玉米农户较近,因此在玉米销售旺季,他们经常充当佣金代理的代理人。因此,他们往往是佣金代理和玉米种植户之间最可靠的纽带。他们以现金方式从分散的小农和边际农户家门口收购玉米。他们还根据佣金代理提供的价格信息告知农民。在某些情况下,比如在泰米尔纳德邦,贸易商还在农田里提供收割和脱粒服务,并直接在田间购买谷物。
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304