简介:实现主要稳定性,它是指放置后立即植入牙齿的机械稳定性,对于成功的骨整合至关重要,尤其是在立即植入物和骨质受损的情况下。然而,尽管牙科植入技术的进步,但对植入物放置过程中骨骼植入物相互作用及其对主要稳定性的影响的知识有限。为了满足这一需求,本研究旨在研究新的锥形植入物设计的主要稳定性(B,Thommen Medical AG,图。1A)使用虚拟稳定性测试。圆柱植入物设计(A,Thommen Medical AG,图1a)用作对照。使用了源自不同钻孔方案的三种不同截骨术类型I,II和III(图1B)。方法:本研究评估了四种植入物 - 骨切开术组合的主要稳定性(AI,AII,BII,BIII,图。1ab)在牛小梁骨样品中使用实验和有限元分析的ABAQUS/显式分析的组合。该低密度骨模型被细分为两个BV/TV(骨体积/总体积)范围:0.16-0.26和0.27-0.38。为了评估一级稳定性,通过将植入物垂直取代其轴直至塌陷,将植入物骨系统加载到压缩模式下。因此,将骨样品从µCT扫描中重建,转换为有限元网格,并与植入物结合到模拟模型。将植入物建模为刚体。该研究量化了四种保留的植入术组合的插入扭矩(IT),刚度(K)和最终推入/拉出力(UF)。最终力(UF)可以用作主要稳定性的客观指标,因为它可以量化植入物骨骼分数的承重能力。使用与盒子图所示的成对比较,使用了指定的BV/TV范围内不同版本的性能,采用了描述性统计。
鸵鸟(Struthio Camelus)是一只鸟,具有相当大的商业价值,涉及剥削其肉,皮革,羽毛和鸡蛋,包括贝壳。大多数肉都位于大腿和背部。鸟类的心脏与哺乳动物的心脏相似,除了某些特征,因为它相对较大并且收缩频率较高。它是圆锥形的,顶端仅由左心室形成。在鸵鸟中,心脏位于Ster Num的凹面表面上。它被尾尾,其长轴垂直于身体的腹壁。作为一种大型奔跑的鸟,鸵鸟需要一个足够的心血管系统。因此,需要对心脏正常形态的描述来开发这种鸟的商业剥削。屠宰后立即收集了一个成年雄性鸵鸟的心脏。器官固定在10%甲醛溶液中,其中浸入10天直到解剖。观察到表面结构并进行了光编码。然后将心脏从顶点打开到耳形,以描述内部结构和光照文献。外部心包在纤维上心包和浆液心包的内脏层中(脑膜)(胸膜)上有一层脂肪组织。中心很小;右心房比左边小。耳环是心房的延伸,并且比哺乳动物的肌肉更突出。对心脏的血液供应是由右冠状动脉(肺部躯干和右上耳中的)和左冠状动脉(肺部躯干和左耳中的)进行的,该动脉的分支与马相似。左上力图在左端的内壁上有两个褶皱,由薄但相对广泛的肌肉层和内膜心脏形成。在内表面上观察到左心室的壁比右心室和肉体小梁的壁厚得多。与哺乳动物中一样,左室室内瓣膜有三个阀,肌腱与乳头状肌肉有关。右心室瓣膜是心室壁的肌肉的折叠,没有肌腱或乳头状肌肉牵引它。心脏的整个内部表面衬有内膜内膜。分析的鸵鸟心与鸟类的心脏有相似之处,尽管左耳是与其他物种不同的特征。
摘要总结本研究旨在更好地定义脚跟QU在断裂预测中的作用。我们的结果表明,Heel-Qus独立于FRAX,BMD和TBS预测骨折。这证实了其用作骨质疏松管理中的案例发现/筛查工具。引言定量超声(QUS)根据声音速度(SOS)和宽带超声衰减(BUA)来表征骨组织。Heel-Qus可以独立于临床危险因素(CRF)和骨矿物质密度(BMD)预测骨质疏松性骨折。我们旨在研究(1)脚跟QUS参数是否独立于小梁骨评分(TBS)和(2)2.5年后脚跟QUS参数的变化与骨折风险有关。方法进行了7年的一千三百四十五次绝经后妇女。Heel-Qus(SOS,BUA和刚度指数(SI)),DXA(BMD和TBS)和MOF每2。5年评估一次。Pearson的相关性和多变量回归分析用于确定QUS和DXA参数与断裂发生率之间的关联。在6。7年的平均随访期间的结果记录了200个MOF。骨折的妇女年龄较大,用抗骨病药物治疗。 QUS,BMD和TBS较低;较高的FRAX-CRF风险;和更多普遍的骨折。TBS与SOS(0.409)和SI(0.472)显着相关。我们发现2。5年内QUS参数的变化与事件MOF之间没有关联。结论脚跟qus独立于FRAX,BMD和TBS来预测断裂。SI,BUA或SOS中的一项SD降低了MOF风险(OR(95%CI))1.43(1.18–1.75),1.19(0.99-1.43)和1.52(1.26–1.84),分别调整了FRAX-CRF,CRF,CRF,CRF,BMD和TBS,BMD和TBS。因此,QU代表了骨质疏松管理中的一个重要病例查找/筛查工具。随着时间的推移,QUS的变化与将来的骨折无关,因此不适合患者监测。
心血管(CV)疾病和骨质疏松症(OP)与类风湿关节炎(RA)和强直性脊柱炎有关。骨骼和血管生物标志物和参数,以及1年抗TNF治疗对这些标记物的影响,以确定RA和AS中血管病理生理学与骨代谢之间的相关性。三十六名患者接受了Etanercept或Certolizumab Pegol治疗,17例接受ETN治疗的患者被包括在一项为期12个月的随访研究中。骨骼和血管标记先前由ELISA评估。通过DXA和定量CT(QCT)测量骨密度。通过超声评估了流动介导的血管舒张(FMD),常见的颈动脉内膜厚度(IMT)和脉冲波速度(PWV)。多个相关分析表明骨骼和血管标记之间的关联。骨蛋白蛋白蛋白蛋白蛋白,硬化蛋白和组织蛋白酶K分别与FMD,IMT和PWV显着相关(p <0.05)。此外,由QCT与IMT成反比的总和和小梁BMD(p <0.05)。另一方面,在血管参数中,血小板衍生的生长因子BB和IMT分别与DXA股骨和QCT总BMD相关(p <0.05)。在RM-ANOVA分析中,抗TNF治疗以及基线骨钙素,Procollagen 1 N末端丙肽(P1NP)或维生素D3水平确定IMT一年变化(P <0.05)。在MANOVA分析中,基线疾病活动指数(DAS28,BASDAI),这些指数的一年变化以及CRP对骨骼和血管标记之间多种相关性的影响(p <0.05)。作为骨与血管生物标志物之间相互作用的模式在基线和12个月之间有所不同,抗TNF疗法影响了这些关联。我们发现RA和接受抗TNF疗法的患者中有很多相关性。一些骨标记与血管病理生理学有关,而某些血管标记与骨骼状态相关。关节炎,全身性炎症和疾病活动可能会引起血管和骨骼疾病。关节炎,全身性炎症和疾病活动可能会引起血管和骨骼疾病。
长期高强度的锻炼会导致心脏适应,继而导致左心室壁厚和腔径增加,有时达到左心室肥大 (LVH) 的标准,通常称为“运动员心脏”。最近的研究还报告称,作为运动引起的结构性适应的一部分,极其剧烈的运动与左心室小梁形成程度增加有关,符合不致密化性心肌病的标准。这些变化特定于运动类型、强度、持续时间以及对心肌的容量和工作量要求。它们被认为是与不良预后无关的生理性适应。相反,由于血压 (BP) 长期升高或瓣膜反流导致的慢性容量超负荷而导致的肥厚性心脏适应会导致心脏功能受损、心血管事件增多,甚至死亡。在年轻运动员中,肥厚性心肌病 (HCM) 是非创伤性、运动诱发的心源性猝死的常见原因。因此,应进行扩展的心脏检查,以区分 HCM 与非病理性运动相关 LVH 或运动员心脏。运动相关的心脏结构和功能适应是正常的生理反应,旨在适应运动带来的增加的工作量。因此,我们建议将这种适应定义为“富营养性”肥大,而 LVH 则保留为病理性心脏适应。日常活动中的收缩压可能是心脏适应的最强预测指标。大多数日常活动的代谢需求约为 3-5 代谢当量 (MET)(1 MET = 每分钟 3.5 毫升 O 2 公斤体重)。这与 Bruce 方案第一阶段跑步机运动的代谢需求相似。一些证据支持该阶段结束时运动收缩压反应 ≥ 150 mmHg 是左心室肥大的有力预测指标,因为这个血压反映了大多数日常体力任务的血流动力学负担。中等强度的有氧训练可降低绝对负荷下的静息和运动收缩压,从而降低日常活动中的血流动力学负担,最终减少 LVH 的刺激。该机制解释了有氧运动干预临床研究解决的 LVH 显著消退问题。
摘要 X 型胶原蛋白是一种由肥大性软骨细胞产生的非纤维胶原蛋白,被认为与生长板软骨的钙化过程有关。然而,小鼠中 Col10a1 基因的纯合缺失对生长板形成或骨骼发育无显著影响。为了研究 X 型胶原蛋白在人类软骨细胞中的作用,我们使用双 sgRNA CRISPR/Cas9 系统建立了具有杂合(COL10A1 + / )或纯合(COL10A1 / )COL10A1 基因缺失的人类诱导多能干细胞 (hiPSC)。建立了几个突变克隆,并通过先前报道的 3D 诱导方法将其分化为肥大性软骨细胞。亲本与突变细胞系在分化过程中无明显差异,均分化为具有肥大性软骨细胞特征的细胞,提示X胶原蛋白对于人软骨细胞体外肥大性分化而言并非必不可少。为探究X胶原蛋白缺乏对体内的影响,将增殖期或肥大前期的软骨细胞颗粒移植到免疫缺陷小鼠体内。增殖期颗粒衍生组织显示软骨细胞呈带状分布,并转变为模拟生长板的骨组织,且骨的比例在 COL10A1 / 组织中趋于较大。肥大前期颗粒衍生组织产生具有软骨内骨化特征的骨小梁结构,亲本与突变体衍生组织之间无明显差异。对处于肥大期的软骨细胞颗粒进行转录组分析显示,与亲本细胞颗粒相比,COL10A1 / 颗粒中增殖期基因表达较低,钙化期基因表达较高。这些体外和体内数据表明,胶原蛋白 X 对于人类 iPSC 衍生软骨细胞的肥大分化和软骨内骨化是可有可无的,尽管它可能促进分化过程。因此,COL10A1 / iPSC 系可用于研究胶原蛋白 X 在软骨细胞分化中的生理作用。© 2023 作者。JBMR Plus 由 Wiley Periodicals LLC 代表美国骨矿研究学会出版。
Although the application of fiber-reinforced concrete (FRC) beams turns back to a few decades ago (Adhikary & Mutsuyoshi, 2006 ; Masuelli, 2013 ; Soltanzadeh et al., 2015 ), significant efforts also have been made to increase the strength and ductility of concrete in construction and building structures since sustainable infrastructure is cru- cial for economic development (Aldwaik &阿德利,2016年)。与其他纤维增强的复合结构(çelik&König,2022; Rafiei&Adeli,2017b; Shafighfard等,2021)一样,最近已证明FRC结构是拥有比正常混凝土更具特殊耐药性和强度的能力。能够预测钢纤维 - 增强混凝土(SFRC)束的结构行为是研究人员在攻击其性能时面临的众多挑战之一(Rafiei等,2017; Singh,2016; Venkateshwaran&Tan,2018)。在众多的弯曲参数中(Gribniak等,2012; Gribniak&Sokolov,2023),延展性比引起了研究人员的注意,因为它的能力反映了结构元素对弯曲载荷的反应。另一个重要的弯曲度量是弯曲载荷能力(峰值负载),该指标已通过数值模拟,实验研究和机器学习(ML)基于基于的预测技术进行了研究。一些研究人员已经对SFRC梁进行了数值和/或分析研究,以降低与实验研究相关的劳动和/或材料成本(Jeong&Jo,2021;Júnior&Parvin,2022)。tan等。Yang等。 (2020)Yang等。(2020)纵向钢筋比率和残留拉伸强度是SFRC梁柔性性能的参数研究中考虑的典型变量。使用纤维来增强拉伸强度并不比连续加固在改善混凝土束的力矩容量方面更有效,但是与普通的RC梁相比,纤维增强型会增加僵硬和强度(Mobasher等人,2015年)。(2022)进行了SFRC材料特性对弯曲性能的影响的参数分析,发现弯曲延展性受到RC梁中高体积分数的影响。对具有不同纤维纵横比,方向和梁尺寸的SFRC梁的三维(3D)模型表明,由于弯曲增强的峰值载荷增加了较高的分布纤维,因此在拉伸应力方向上定向纤维。此外,具有较低纤维增强比的较小梁显示出较高的峰值载荷(Al-Ahmed等,2022)。实验研究通常被认为是数值工作(Pereira等,2020)的组成部分,以验证它们提供的结果。
抽象的客观类风湿关节炎(RA)是一种慢性炎症性疾病,会导致关节损伤,包括软骨降解和骨侵蚀。骨形态发生蛋白9(BMP9)是TGF-β超家族的成员,在成骨和组织修复中起关键作用。然而,其在RA中的骨侵蚀和炎症中的作用仍然不足。本研究旨在评估BMP9在RA中的治疗潜力,重点是其对骨骼破坏,成骨和炎症的影响。本研究的材料和方法,使用免疫组织化学,qRT-PCR和Western印刷物分析了来自RA和骨关节患者的滑膜组织中的BMP9表达。通过Micro-CT成像,组织学分析和临床评分,在CIA小鼠模型中评估了BMP9对骨骼破坏的治疗作用。成骨分化,而通过耐锈酸磷酸酶染色检查破骨细胞活性。荧光双标记用于跟踪新的骨形成。数据,并进行了适当的统计检验以确定显着性。在这项研究中,在RA患者的滑膜组织和CIA小鼠的踝关节中,BMP9表达显着下调。BMP9在CIA小鼠中的治疗改善了关节炎症,如肢体肿胀,下关节炎指数减少和改善的组织形态所示。此外,BMP9显着减轻了骨质流失,这可以通过骨矿物质密度和小梁结构增加证明。但是,BMP9处理并未明显影响破骨碎裂发生或骨吸收。BMP9还增强了骨矿化和形成,如矿物质的含量和骨形成率的提高所示。此外,BMP9促进了滑膜细胞的成骨分化,增强了碱性磷酸酶活性和矿物结节的形成。这些结果表明,BMP9对RA的关节炎症和骨质流失具有保护作用,这可能是通过促进骨形成而不会影响破骨细胞活性的。结论我们的研究得出的结论是,靶向BMP9减轻RA中的炎症并促进成骨的差异,强调BMP9是解决RA中骨骼破坏的有前途的治疗靶标。关键词BMP9,类风湿关节炎,成骨分化,骨骼破坏,炎症
(包括与同种异体移植物和骨骼替代品一起使用的自体干细胞)/背景间充质干细胞间充质干细胞(MSC)是多能细胞(也称为多能状基质细胞),可以分化为各种组织,包括器官,小梁骨,肌腱,关节骨,肌肉软骨,肌肉,肌肉,肌肉,肌肉,肌肉,肌肉和脂肪,以及。MSC在骨科应用中的潜在用途包括治疗受损的骨骼,软骨,韧带,肌腱和椎间盘。MSC与骨髓,滑膜,脂肪和肌肉内的血管有关,在那里它们可以动员以进行内源性修复,就像骨折的愈合一样。组织,例如软骨,肌腱,韧带和椎骨椎间盘,由于功能性组织成分的三合会的存在有限:脉管系统,神经和淋巴结液的能力有限。正寄生学是一个介绍的术语,用于描述使用细胞和生物材料支持愈合和修复的干预措施。 细胞疗法是MSC直接应用于肌肉骨骼部位。 组织工程技术使用MSC和/或生物活性分子,例如生长因子和脚手架组合,以提高受损肌肉骨骼组织的修复或再生的效率。 1骨髓抽吸物被认为是最容易获得的来源,因此是分离肌肉骨骼疾病的MSC的最常见位置。 但是,从骨髓收集MSC需要一种可能导致供体发病率的程序。正寄生学是一个介绍的术语,用于描述使用细胞和生物材料支持愈合和修复的干预措施。细胞疗法是MSC直接应用于肌肉骨骼部位。组织工程技术使用MSC和/或生物活性分子,例如生长因子和脚手架组合,以提高受损肌肉骨骼组织的修复或再生的效率。1骨髓抽吸物被认为是最容易获得的来源,因此是分离肌肉骨骼疾病的MSC的最常见位置。但是,从骨髓收集MSC需要一种可能导致供体发病率的程序。此外,骨髓中的MSC数量很低,骨髓衍生的MSC的数量和分化能力随着年龄的增长而降低,从老年患者中隔离时限制了其效率。在体内,干细胞的命运受到细胞外基质和相邻细胞的局部3维微环境的信号调节。认为,组织工程在MSC中的成功也将需要适当的3维支架或
指南:•本政策未证明福利的福利或授权,这是由每个个人保单持有人条款,条件,排除和限制合同指定的。它不构成有关承保或报销/付款的合同或担保。自给自足的小组特定政策将在小组补充计划文件或个人计划决策中指导其他情况时取代该一般政策。•最重要的是通过编码逻辑软件适用于所有医疗主张的编码编辑,以评估对公认国家标准的准确性和遵守。•本医疗政策仅用于指导医疗必要性,并解释用于协助做出覆盖决策和管理福利的正确程序报告。范围:X专业_设施描述:间充质干细胞(MSC)是多功能细胞(也称为“基质多能细胞”)具有分化为多种组织类型的能力,包括器官,小梁骨,肌腱,关节骨,关节骨软骨,肌肉,肌肉,肌肉和脂肪。间充质干细胞已从骨髓经典获得,并已被证明分化为各种细胞类型,包括成骨细胞,软骨细胞,肌细胞,脂肪细胞和神经元细胞。MSC在骨科应用中的潜在用途包括治疗受损的骨骼,软骨,韧带,肌腱和椎间盘。MSC治疗的拟议益处是改善愈合,并可能避免使用持久的恢复时间进行手术程序。从理论上讲,MSC对成骨生长因子有反应,并有助于骨骼的愈合。尽管尚未建立处理技术变化,并且尚未建立要移植/种子的最佳MSC数量,但自体骨髓收集MSC浓缩以进行直接注射,或者进行培养和孵育。一旦培养了MSC,就可以与凝胶或糊状物等生物材料混合;生物材料将细胞悬挂固定,并为填充缺陷提供矩阵。MSC也可以在支架上播种,并在与植入的支撑矩阵一起使用(例如,组织工程)时进行了研究。尽管如此,评估使用MSC来增强骨骼愈合的发表的经过同行评审的科学文献中的证据主要包括动物试验和人类试验的匮乏。目前,单独使用时,证据不足以支持改善临床结果,添加到其他生物材料中,或在支持基质上培养/种子。