摘要 - 进入极端地形,例如洞穴或陨石坑,是未来行星探索机器人的关键挑战。许多实验机器人系统要么使用创新的运动概念或精心制作的任务设计来探索更具挑战地形。但是,这需要高度专业的任务特定机器人设计,从而限制了机器人一般应用的范围。我们通过使现有的漫游者系统团队将轨迹探索作为额外的机会任务任务来调查另一种方法。Rovers在一个束缚的Abseiling操作中进行了合作,从而增强了机器人团队一名成员的运动能力。我们使用我们的两个行星漫游原型在一般多功能多机器人月亮模拟任务的范围内进行火山口探索。在本文中,我们首先概述了对流动站系统的设计和修改,并描述了实验的一般部分自治设置,包括用于挂接系绳的机器人合作,并将其挂入火山口。第二,我们在火山Mt.ETNA,意大利,2022年。 在现场,流浪者成功地进入了甲壳虫小火山口,这是宽度约150 m,深度约为30 m,其陡峭的侧面部分紧凑,部分宽松且部分松散的火山土壤。 该实验表明协作操纵对束缚两个流浪者的可行性。 还显示出由于绞车而显示出增强的漫游动力,从而实现了安全的火山口探索。ETNA,意大利,2022年。在现场,流浪者成功地进入了甲壳虫小火山口,这是宽度约150 m,深度约为30 m,其陡峭的侧面部分紧凑,部分宽松且部分松散的火山土壤。该实验表明协作操纵对束缚两个流浪者的可行性。还显示出由于绞车而显示出增强的漫游动力,从而实现了安全的火山口探索。我们终于讨论了从该实验中学到的经验教训以及其余的实施步骤,以实现当地自主的火山口探索。
丽鱼科鱼是这种适应性辐射的教科书示例。它们是包含2200多种物种的最富含物种的脊椎动物家族之一,它们表现出非凡的形态,生理和行为变化[2-4]。大多数物种(大约2000)在东非湖泊,坦any尼卡,维多利亚和马拉维发现。仅马拉维湖就有800多种在过去的80万年中出现的[4,5]。它们在身体形状,颅面骨骼,下颌设备,侧线系统,大脑,视力和色素沉着表型等方面显示出广泛的形态变化[6-13]。尽管它们的形态多样性,但马拉维酸硅酸盐物种对之间的平均序列差异仅为0.1 - 0.25%,因此在这个湖中,不同的表型的演变似乎是通过相对较小的遗传变化而发生的[5,14]。它们的遗传相似性可以实现种间杂交,可用于定量性状基因座分析,以发现物种特异性性状变异的基因。这是由于它们对实验室和近年来提供的基因组资源财富的能力所支持的,其中包括许多代表性的参考基因组[15]。尽管上述工具有助于发现与性状多样化相关的基因座,但只能通过通过基因组编辑来测试候选基因功能来实现因果关系证明。A. Calliptera占据了包括马拉维湖在内的栖息地,以及外围河流和湖泊[16]。在这里,我们报告了CRISPR/CAS9在Cichlid Astatotilapia calliptera中生成编码和非编码序列突变体的应用,这是一种母体的喉咙毛毛类鱼,这是马拉维单倍蛋白辐射的一部分。系统发育分析表明,所有马拉维酸菊酯物种都可以分为七个生态形态组,这是由三种独立的丽鱼辐射造成的,这些裂解源自源自通才的astatotilapia-型祖先谱系[5]。因此,A。Calliptera是一个有用的模型,在该模型中开发功能工具来探索马拉维纯粹的丽鱼科学物种形成和适应性(图1)。我们专门针对一个A. Calliptera人口,来自马拉维湖以北的一个小火山口湖(图1A),在文献中称为Masoko湖(德国殖民地管理局使用),并在当地被称为Kisiba湖[17]。来自Masoko/Kisiba的Astatotilapia calliptera处于适应性差异的早期阶段,其中两个不同的生态形态在身体形状,饮食,营养形态和身体着色(图1 B)上也有所不同(图1 B),也使其成为研究早期概况阶段的理想系统。重要的是,A。Calliptera具有高质量的参考基因组,并且适合实验室环境。他们有一个8 - 12个月的生成时间,以非季节性的方式容易繁殖,允许一年一度的鸡蛋收集用于基因编辑和胚胎发育研究。我们选择为相对良好的特征性基因眼皮白化病(OCA2)生成突变体,因为它具有易于可见的表型,其中黑色色素产生(黑色素)受损,从而使早期的胚胎阶段从哪个