*)如果充电器未连接到主电源,则后电流流量是排干电池的电流。CTEK充电器的后背电流非常低。**)充电电压和充电电流的质量非常重要。高电流纹波会加热电池对正电极的老化影响。高压波纹可能会损害连接到电池的其他设备。CTEK电池充电器可产生非常干净的电压和低纹波的电流。
本文由查普曼大学药学院数字共享资源免费提供给您,供您免费访问。查普曼大学数字共享资源的授权管理员已接受本文,将其纳入药学院教师文章和研究中。如需更多信息,请联系 laughtin@chapman.edu。
高密度脑电图 (HD-EEG) 已被证明是估计大脑内部神经活动精度最高的 EEG 蒙太奇。多项研究报告了电极数量对特定源和特定电极配置的源定位的影响。这些配置的电极通常是手动选择的,以均匀覆盖整个头部,从 32 个电极到 128 个电极,但电极配置通常不是根据它们对估计精度的贡献来选择的。在本文中,提出了一项基于优化的研究,以确定可使用的最小电极数量,并确定可以保持 HD-EEG 重建定位精度的最佳电极组合。这种优化方法结合了广泛使用的 EEG 蒙太奇的头皮标志位置。这样,可以针对单源和多源定位问题系统地搜索最小电极子集。非支配排序遗传算法 II (NSGA-II) 结合源重建方法用于制定多目标优化问题,该问题同时最小化 (1) 每个源的定位误差和 (2) 所需的 EEG 电极数量。该方法可用于评估低密度 EEG 系统(例如消费级可穿戴 EEG)的源定位质量。我们对已知真实值的合成和真实 EEG 数据集进行了评估。实验结果表明,对于单个源情况,具有 6 个电极的最佳子集可以达到与 HD-EEG(具有 200 多个通道)相同或更好的精度。在重建特定大脑活动时,在合成信号中超过 88% 的情况和在真实信号中超过 63% 的情况都会发生这种情况,而在考虑具有 8 通道的最佳组合时,分别在超过 88% 和 73% 的情况下也会发生这种情况。对于三源多源情况(仅使用合成信号),研究发现,在至少 58%、76% 和 82% 的情况下,8、12 和 16 个电极的优化组合可达到与 231 个电极 HD-EEG 相同或更好的精度。此外,对于这样的电极数量,获得的平均误差和标准偏差低于 231 个电极。
应用于医疗测量技术(例如剂量测定和近距离放射治疗)、环境测量技术(例如粉尘浓度或排放控制测量),还应用于现代半导体工业(微电子和纳米电子学)或现代照明工业。所提出的方法基于一种新型、方便的仪器,即超稳定、低噪声电流放大器(英语超稳定低噪声电流放大器,简称ULCA),用作电流-电压转换器,具有出色的性能,无需直接使用低温方法[3, 4]。其高度稳定的传输系数基于量子霍尔效应进行“量子精度”校准,电压信号采用基于约瑟夫森电压标准的电压表测量。原则上,计划在不久的将来对 SI 进行修订,定义基本电荷 e 的精确值,这使得根据关系 I = e ∙ 表示追溯到频率 f 的电流强度成为可能f[1]。然而,由于制造技术和操作的复杂性非常高,目前正在开发的必要的单电子泵尚未完全开发用于实际计量用途[5-8]。迄今为止,计量机构已经进行了亚纳安电流的再循环生成,优选使用基于使用电压斜坡的电容器充电的过程[9-11]。相对不确定性最多达到 10 µA/A 左右 [12],其中精度受到电容器容量频率依赖性的不确定性贡献的限制 [13]。ULCA 概念避免了这一基本限制。除了其他实质性的实际优势外,ULCA 还能够生成和测量小电流强度,其不确定性比传统方法小大约两个数量级。ULCA的概念、特点、可能的应用以及初步应用的结果如下