正常的人类细胞可以合成胆固醇或从脂蛋白中取出以满足其代谢需求。在某些恶性细胞中,从头胆固醇的合成基因是转录静音或突变的,这意味着生存需要脂蛋白的细胞摄取。最近的数据表明,依赖于脂蛋白介导的胆固醇摄取的淋巴瘤细胞也会受到氧化和铁依赖性细胞死亡机制的影响,这是由细胞膜中氧化脂质积聚而触发的,除非脂质氢氧化酶4(glutathione periquidase 4(GPEXID)的氧化脂质酶4(GPSID)对氧化脂蛋白溶液酶4(GPXID酶4(GPXID)。研究将胆固醇摄取的机制与铁凋亡联系起来,并确定高密度脂蛋白(HDL)受体作为胆固醇消耗疗法的靶标的潜在作用,我们治疗了淋巴瘤细胞系已知对减少HDL型Nananoparke(Hdplike nanopark)(Hdplike nanapters)(Hdpp)(Hdplike nanopart)(Hdpp)(Hdplike)敏感。HDL NP是一种胆固醇贫乏的配体,与富含胆固醇的HDL,可寻求的B1型HDL结合(Scarb1)。我们的数据表明,HDL NP治疗激活了治疗细胞中的分解代谢反应,降低了从头胆固醇的合成,伴随着GPX4表达的几乎完全降低。结果,氧化的膜脂质积聚,通过与铁吞作用一致的机制导致细胞死亡。全身在小鼠淋巴瘤异种移植物和从淋巴瘤患者获得的主要样品中,全身给药后,我们在体内获得了相似的结果。总而言之,用胆固醇吸收中的HDL NP靶向SCARB1 - 上瘾的淋巴瘤细胞消除了GPX4,导致癌细胞死亡与与铁毒性相一致的机制。
在“脂质贩运和疾病(巴塞罗那IDIBAPS)”小组中提供了博士后研究职位,可以参加ERC授予的“脂质液滴作为先天免疫枢纽(DRIMMS)”项目。这项研究将由ICREA教授阿尔伯特·波尔(Albert Pol)监督,这是由我们的小组和罗伯特·G·帕顿(Robert G. Parton)(澳大利亚皇后区)和卡罗琳·登甘格(Caroline Demangel)(巴黎)组成的国际财团“脂质液滴含疫免疫小组”的一部分。候选人必须拥有生物学,医学或类似博士学位。特征。在研究项目的设计和开发方面的先前经验将受到积极的重视。合同将包括六个月的试用期,薪水将由IDIBAPS规定(根据以前的经验,36,000至42,000)。在以下领域/技术中的经验将被积极评价:
1美国宾夕法尼亚州宾夕法尼亚大学生物工程系宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷曼医学院再生医学,美国宾夕法尼亚州6,这些作者对这项工作做出了同样的贡献
神经母细胞瘤 (NB) 是儿童中最常见的颅外肿瘤,平均年龄为 17 个月。NB 是一种源自胚胎神经嵴细胞的自主神经系统肿瘤 [1],其恶性肿瘤的发病机制以分化阻滞为特征 [2,3]。这种异质性疾病涉及许多因素,包括年龄、疾病分期以及遗传和分子特征,这些因素又会影响 NB 是自发消退还是转移并对治疗产生抗药性 [4,5]。在 NB 中描述的基因改变中,MYCN 扩增是最常见的基因功能障碍,也与不良预后有关。此外,影响 α-地中海贫血/智力低下综合征 X 连锁 (ATRX) 基因 [6] 或间变性淋巴瘤受体酪氨酸激酶 (ALK) [7] 的突变在 NB 中也很常见。目前,NB 的治疗策略是根据患者分层分为四个预后组:低危、中危、高危和肿瘤 4 期 [ 8 ]。
线粒体是细胞能量代谢和主要信号中心的联系,可将内部和没有细胞内部信息整合到实现细胞功能的主要信号中心。mito-Chondria携带一个独特的多倍体基因组线粒体DNA(mtDNA),该基因组编码能量生产所需的呼吸链成分。mtDNA突变和延伸与人类的肥胖和代谢综合征有关。在细胞和亚细胞水平上,mtDNA合成由与脂质转移的膜接触位点协调,将基因组维持到脂质储存和稳态。在这里,我们研究了mtDNA与脂质流通性的关系,脂毒性对mtDNA完整性的影响以及在原发性mtDNA疾病中如何破坏脂质代谢。
膜脂质组成和组织的调节目前正在作为针对各种疾病(包括癌症)的有效治疗策略发展。这个场被称为膜脂质疗法,已经从脂质复杂组织以及质膜中脂质和蛋白质之间的新发现中升起。膜微区域已被公认为是参与调节细胞内信号传导,细胞凋亡,氧化还原平衡和免疫反应的蛋白质受体的重要浓缩平台。健康细胞和肿瘤细胞的细胞膜之间脂质组成的差异使基于靶向癌细胞中膜脂质的新疗法开发,以提高对化学治疗剂的敏感性,从而击败多药耐药性。在当前的手稿策略中,基于影响的胆固醇/鞘脂含量的含量将与创新的含量一起呈现,更加集中于改变膜双层的生物物理特性,而不会影响其成分的组成。
脂质纳米颗粒的解剖结构 LNP 通常由四种关键成分组成:磷脂、可电离阳离子脂质、胆固醇和聚乙二醇连接 (PEG 化) 脂质(见方框)。与构成每个细胞膜的脂质一样,LNP 包裹并保护其货物。易降解的有效载荷(如 mRNA)受到保护,直到 LNP 能够将其内容物输送到细胞中。LNP 通常是球形的,平均直径在 10 到 1,000 纳米之间,包裹的材料可以包括核酸、蛋白质片段或其他生物有效载荷。人们付出了巨大努力来设计 LNP 组件以与核酸货物兼容。核酸带有多阴离子电荷,这使得它们排斥带负电荷的磷脂。可电离阳离子脂质的开发对于 mRNA-LNP 疫苗至关重要。这些脂质在酸性 pH 下带正电荷,在储存期间包围并包裹核酸。一旦 LNP 被注射并进入 pH 中性的血液,可电离脂质就会恢复中性,这有助于 LNP 逃避免疫检测。颗粒疏水性和正电荷都与免疫反应增强有关。6,7 LNP 通过内吞作用被吸收到细胞中,但它们被隔离在内体中,内体是注定要被破坏的细胞器。然后,可电离脂质在内体的酸性环境中恢复正电荷,最终破坏 LNP 结构并释放细胞内的核酸。8
摘要脂质纳米颗粒 (LNP) 是临床上最先进的非病毒基因传递系统。虽然在增强传递方面取得了进展,但细胞特异性靶向仍然是一个挑战。靶向部分(例如抗体)可以化学结合到 LNP 上,但是,这种方法很复杂,并且在扩大规模方面面临挑战。在这里,我们开发了一种生成抗体结合 LNP 的方法,该方法利用双特异性抗体 (bsAb) 作为靶向桥。作为 bsAb 的对接位点,我们生成了具有短表位的 LNP,该表位源自血凝素抗原 (HA),嵌入颗粒的 PEG 成分 (LNP HA )。我们生成了 bsAb,其中一个域结合 HA,另一个域结合不同的细胞表面蛋白,包括 PD-L1、CD4、CD5 和 SunTag。bsAb 和 LNP 的非化学结合大大提高了表达同源靶标的细胞的转染效率和特异性。 LNP/bsAb 介导体内转染 PD-L1 表达癌细胞的几率增加 4 倍,体外转染静止原代人 T 细胞的几率增加 26 倍。此外,我们还创建了一种通用 bsAb,可识别 HA 和抗大鼠 IgG2,使 LNP 能够与现成的抗体(如 CD4、CD8、CD20、CD45 和 CD3)结合。通过利用分子对接和 bsAb 技术,这些研究展示了一种简单有效的策略来生成抗体偶联的 LNP,从而实现精确高效的 mRNA 递送。
• 小鼠品系:C57BL/6 和 ApoE KO • 剂量:1 mg/kg • Life Edit LNP • mRNA:fLuc + b-gal 组合 (1:1) • 时间点:静脉注射后 6 小时