一氧化二氮(N 2 O)从废水处理厂的排放量,具有变暖的潜力为12 298倍,这是CO 2的降低,对降低其碳足迹构成了重大挑战。当前的13个缓解策略着重于限制氮化和反硝化过程中的n 2 o形成14,但忽略了微生物还原机制。这项研究研究了15种增强一氧化二氮还原酶(NOSZ)活性的潜力,以降低N 2 O至N 2。我们假设16个战略氧操作可以通过连续的NOSZ表达17增强n 2 O的破坏,并在具有优质NOSZ功能的微生物中实现NOSZ激活。我们使用宏基因组学和19种元蛋白质组学评估18个微生物群落功能和代谢调节,以阐明间歇性曝气方案对N 2 O排放的影响。20与周期性缺氧暴露的间歇性充气通过增强菌只菌的代谢活性,从而显着降低了N 2 O的排放,并清除21 71%的氮。nosz 22的活性在系统适应氧气调节后增加了4至6.5倍,将23次与没有缺氧相的连续氧氧化循环相比。后者导致24 N 2 O排放量增加,这是由于NOSZ活性抑制的25甲基杆菌的产生,而N 2 O的产生增加,该甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基的排放量增加了。我们的发现,26个战略氧气操纵可以为N 2 O的破坏提供能量,为27种开发下一代废水处理技术奠定了基础,以减轻N 2 O排放。28
技术突破令人瞠目结舌。我们已迅速从自动完成的聊天机器人转向能够产生可信的、像人类一样的“思维链”(CoT)的推理机器,以找到复杂问题的解决方案。如今,多模态大型语言模型(LLM)可以无缝处理文本、音频、图像和视频。像 Agentic AI 这样的新兴趋势正在使自主实体能够采取行动。新硬件平台和新 AI 加速器的发展确保了计算能力能够支持日益复杂的模型,这些模型甚至拥有一万亿个参数和突破性的效率。
抽象的慢性耳鸣是一种中枢神经系统疾病。当前,肠道菌群对耳鸣的影响仍未探索。为了探索肠道菌群与耳鸣之间的联系,我们在70名耳鸣和30名健康志愿者的患者组中进行了16S rRNA测序,对粪便菌群和血清代谢组分分析进行了16s rRNA测序。我们使用加权基因共表达网络方法来分析肠道菌群与血清代谢产物之间的关系。随机森林技术被用来选择代谢物和肠道分类单元来构建预测模型。耳鸣组中明显的肠道营养不良,其特征是细菌多样性降低,富公司/细菌的比率增加,并且包括气或细菌在内的一些机会性细菌富含。相比之下,一些有益的肠道益生菌减少了,包括乳杆菌和乳杆菌科。在血清MIC分析中,耳鸣患者和这些差异代谢产物的血清代谢障碍富含神经炎症,神经递质活性和突触功能的途径。预测模型在测试集中表现出出色的诊断性能,达到0.94(95%CI:0.85-0.98)和0.96(95%CI:0.86-0.99)。我们的研究表明,肠道微生物群的变化可能会影响耳鸣的发生的出身和慢性,并通过血清代谢产物的变化发挥调节作用。总体而言,这项研究提供了对肠道微生物群和血清代谢产物在耳鸣的发病机理中潜在作用的新看法,并提出了“肠道 - 脑耳 - 耳朵”的概念,作为耳鸣的病理机制,具有明显的临床诊断含义和治疗潜力。
作者:KB Yeh · 2021 · 被引用 2 次 — 这些项目的共同目标是减少生物威胁并加强全球卫生安全。我们的调查审查了这些合作研究……
