国防部内外的其他航空组织通过不断改进维护流程(陆军尚未达到的程度)成功应对了类似的挑战。本研究考察了多个此类案例,以确定现有飞机机队是否有可能获得显著收益。接下来评估的是陆军航空兵目前的设备和实践从此类修订中受益的可能性。最终的答案是,目前航空兵部队存在未实现的维护效率,这可能是实现当前和未来陆军任务所要求的战备状态的最佳途径
随着寿命的延长,循环系统疾病或癌症成为人类死亡的主要原因,位列第二。 2012年,我国因恶性肿瘤疾病死亡人数超过3.3万人。癌症类型因性别而异,但肺癌是导致死亡人数最多的癌症。我们的遗传、营养、所在地点和生活方式对我们的健康有着巨大的影响。据专家预测,2030年全球肿瘤疾病发病数将达到2600万,每年死亡率为1150万。在很多情况下,可以通过改变饮食和生活方式来预防肿瘤的形成。世界各地的无数实验室正在努力寻找治疗慢性病的方法。众所周知,大多数药物也有副作用,我们常常试图通过服用其他药物来抵消副作用。这次,天然药物也帮助了我们,它是一种传统上用于治疗疟疾的植物,即其提取物。这种救命的草药是青蒿(Artemisia annua),其有效成分是具有破坏癌细胞特性的青蒿素。作用机制是什么以及医学在这方面能够提供什么证据?我们将得到所有这些问题的答案,但在此之前,让我们先回顾一下可以使用这种具有抗癌特性的提取物来治疗的疾病。
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总的来说,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是同样重要的高度通用的电子显示器和输入/输出设备的出现。
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总的来说,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是同样重要的高度通用的电子显示器和输入/输出设备的出现。
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总的来说,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是同样重要的高度通用的电子显示器和输入/输出设备的出现。
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总的来说,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是同样重要的高度通用的电子显示器和输入/输出设备的出现。
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总体而言,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年中,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是高度通用的电子显示器和输入/输出设备,这一点同样重要。
鱼雷和水雷 1941 年 12 月 22 日,战时内阁会议决定在澳大利亚制造鱼雷,这项决定使该国的精密工程领域承担了一项极其艰巨的任务;由于鱼雷在现代军备中占据重要地位,这项任务具有极其重要的潜在意义。海权是英国在 19 世纪称霸世界强国的基石,因此鱼雷的研发本质上是英国的成就也就不足为奇了,尽管它最初并不是英国的发明。英国在鱼雷应用方面早期的领先地位很大程度上归功于指挥官(后来的海军上将)费舍尔的热情,但其他大国不久也进入了该领域。这种武器的巨大潜力首次显现于 1914 年至 1918 年的战争中,当时德国利用 U 型潜艇和鱼雷对商船造成了巨大损失,几乎让英国屈服。第一次世界大战后的二十年间,随着飞机投掷鱼雷方法的发展,鱼雷的破坏力进一步增强,不需要太多洞察力就能预测鱼雷在未来战争中的作用。2 英国的鱼雷制造主要由一家私人公司怀特黑德鱼雷公司(Whitehead Torpedo Company)和位于苏格兰格里诺克的海军部负责。 1941 年 7 月,海军部担心英国的鱼雷生产可能会因轰炸或入侵而受阻,甚至完全停止,因此开始研究为这种紧急情况提供替代中心的方法。英国的制造业已尽可能分散,但尚未在英国以外建立中心。1941 年 7 月 15 日,海军部在给澳大利亚海军委员会的一封信中表示:“如果鱼雷制造商能够在英国制造鱼雷,那将是一个相当大的优势。”
磁场在具有导电性的附近物体(如地雷中的金属)周围形成。物体的可检测性取决于感应磁场的强度以及物体的导电性、大小、形状和位置。例如,铜、铝和普通钢都是良好的导体,相对容易检测。不锈钢比一块相同的普通钢更难检测,因为它对感应磁场的抵抗力更强,因此产生的二次磁场更弱或更小。便携式金属探测器采用连续波或脉冲方式进行发射和接收。连续波探测器连续感应和监测磁场,以感知导电物体的二次场造成的任何干扰;脉冲探测器以交替周期发送和接收以寻找二次磁场。