摘要。含水层具有独特而高度适应的物种,有助于关键的生态过程和服务。了解含水层中驱动无脊椎动物的关键因素是一项具有挑战性的任务,传统上这主要是在喀斯特实现的。这项研究旨在解除影响意大利中部火山含水层中地下水甲壳类动物(尺寸为0.036至1 mm)的组成和功能的因素。含水层由三个相邻的含水层单元(AUS)组成,显示不同的地球化学(即硫酸盐耗尽的,富含K的K和碱性)。我们采用了一种多学科的方法,整合了水文地质,地质,微生物学和生态学,以确定在生物逻辑组合中我们在三种AU中强调的环境差异是否得到了反映。,我们在三种AUS的地面甲壳类动物的分类学和功能组成中揭示了显着差异,并且在整个调查期间,这些模式均保持一致。值得注意的是,耗尽硫酸盐的AU缺乏地下水的物种,藏有洞穴和stehothermal和中等st骨的物种。富含K和碱性的AUS具有不同的物种;但是,这些物种表现出与运动,饮食和喂养习惯有关的相似功能。Stenothermal
组成髓样恶性肿瘤的细胞的功能多样性,即遗传和表观遗传异质性在这种多样性中的各自作用,仍然知之甚少。 这个问题在慢性脊髓细胞性白血病(一种髓样肿瘤中)解决,其中临床多样性与遗传异质性有限。 To generate induced pluripotent stem cell clones, we reprogrammed CD34 + cells collected from a patient with a chronic myelomonocytic leukemia in which whole exome sequencing of peripheral blood monocyte DNA had identified 12 gene mutations, including a mutation in KDM6A and two heterozygous muta- tions in TET2 in the founding clone and a secondary KRAS (g12d)变形。 还对来自年龄匹配的健康供体的CD34 +细胞进行了再生。 我们捕获了患者观察到的一部分遗传异质性,即 我们分析了五个具有两个遗传背景的克隆,没有KRAS(G12D)突变。 这些克隆的造血分化概括了患者疾病的主要特征,包括颗粒细胞和染色体症的过量生产。 这些分析还揭示了源自具有相似遗传背景的诱导多能干细胞克隆的造血细胞行为的显着差异,与有限的表观遗传变化相关。 这些分析表明,除了编码突变外,几个水平的隆内异质性可能参与疾病的尚未解释的临床异质性。组成髓样恶性肿瘤的细胞的功能多样性,即遗传和表观遗传异质性在这种多样性中的各自作用,仍然知之甚少。这个问题在慢性脊髓细胞性白血病(一种髓样肿瘤中)解决,其中临床多样性与遗传异质性有限。To generate induced pluripotent stem cell clones, we reprogrammed CD34 + cells collected from a patient with a chronic myelomonocytic leukemia in which whole exome sequencing of peripheral blood monocyte DNA had identified 12 gene mutations, including a mutation in KDM6A and two heterozygous muta- tions in TET2 in the founding clone and a secondary KRAS (g12d)变形。还对来自年龄匹配的健康供体的CD34 +细胞进行了再生。我们捕获了患者观察到的一部分遗传异质性,即我们分析了五个具有两个遗传背景的克隆,没有KRAS(G12D)突变。这些克隆的造血分化概括了患者疾病的主要特征,包括颗粒细胞和染色体症的过量生产。这些分析还揭示了源自具有相似遗传背景的诱导多能干细胞克隆的造血细胞行为的显着差异,与有限的表观遗传变化相关。这些分析表明,除了编码突变外,几个水平的隆内异质性可能参与疾病的尚未解释的临床异质性。
7 8 Andrea Serino* 1,2, , Marcie Bockbrader* 3 , Tommaso Bertoni 1 , Sam Colachis 3p,4c , Marco 9 Solca 2 , Collin Dunlap 3,4 , Kaitie Eipel 3p , Patrick Ganzer 4 , Nick Annetta 4 , Gaurav 10 Sharma 4p,9c , Pavo Orepic 2 , David Friedenberg 4 , Per Sederberg 5 , Nathan Faivre 2,6 , Ali 11 Rezai** 7 , Olaf Blanke** 2,8 12 13 1 MySpace 实验室,临床神经科学系,洛桑大学医院 14 (CHUV),洛桑,瑞士; 2 瑞士日内瓦联邦理工学院 (EPFL) 大脑思维神经修复研究所和中心认知神经科学实验室,生物技术校区;3 美国俄亥俄州哥伦布市俄亥俄州立大学物理医学与康复系;4 美国俄亥俄州哥伦布市巴特尔纪念研究所医疗器械与神经调节系;5 美国弗吉尼亚州夏洛茨维尔市弗吉尼亚大学心理学系;6 格勒诺布尔阿尔卑斯大学、萨瓦大学勃朗峰分校,CNRS,LPNC,38000 格勒诺布尔,法国;7 美国西弗吉尼亚州摩根敦市西弗吉尼亚大学洛克菲勒神经科学研究所;8 瑞士日内瓦大学医院神经病学系;9 美国俄亥俄州代顿市空军研究实验室。 24 25 * 这些作者的贡献相同;** 这些作者共同指导了这项工作。 26 p 工作时的先前隶属关系;c 当前隶属关系 27 28 29 * 这些作者的贡献相同;** 这些作者共同指导了这项工作。 30
摘要 — 脑机接口 (BCI) 促进了大脑和外部设备之间的直接交互。为了在侵入式 BCI 中同时实现高解码精度和低能耗,我们提出了一种结合局部突触稳定 (LSS) 和通道注意 (CA) 的新型脉冲神经网络 (SNN) 框架,称为 LSS-CA-SNN。LSS 优化了神经元膜电位动力学,提高了分类性能,而 CA 细化了神经元激活,有效降低了能耗。此外,我们引入了 SpikeDrop,这是一种数据增强策略,旨在扩展训练数据集,从而增强模型的通用性。在两只恒河猴记录的侵入式脉冲数据集上进行的实验表明,LSS-CA-SNN 在解码精度和能源效率方面均超越了最先进的人工神经网络 (ANN),性能提升了 0.80-3.87%,节能了 14.78-43.86 倍。这项研究强调了 LSS-CA-SNN 和 SpikeDrop 在推进侵入式 BCI 应用方面的潜力。
体感皮层的皮层内微刺激 (ICMS) 可激活刺激电极周围的神经元并引发触觉。然而,目前尚不清楚皮层神经元的直接激活如何影响它们处理来自皮肤的其他触觉输入的能力。在左、右体感皮层均植入慢性微电极阵列的人体中,我们在同时提供 ICMS 的同时向皮肤施加机械振动,并量化机械和电刺激对触觉的影响。我们发现阈下 ICMS 增强了皮肤触摸的敏感度,证据是振动触觉检测阈值降低(中位数:-1.5 dB),但阈下振动不会系统性地影响 ICMS 的可检测性。超阈值振动导致 ICMS 阈值增加(中位数:2.4 dB),但超阈值 ICMS 对振动触觉阈值影响不大。 ICMS 引起的振动触觉敏感性增强与位置有关,刺激电极的投射场和振动刺激的位置距离越远,效果大小越小。这些结果表明,仅对皮质进行有针对性的微刺激就可以局部增强触觉敏感性,有可能恢复或加强受伤后保留的触觉。
摘要 皮层内脑机接口 (iBCI)(例如 Neuralink 所展示的接口)在实现人脑与外部设备之间的直接通信方面表现出巨大潜力。然而,神经数据的复杂性和高维性对将大脑活动解释和翻译成有意义的命令提出了挑战。本文全面回顾了 iBCI 的现状,包括先进的信号采集和解码技术,并探讨了传统方法在实现无缝脑机交互方面的局限性。我们提出了一种新方法,利用配备反射、分层规划和决策等功能的高级 AI 代理作为大脑和 iBCI 之间的接口。通过结合这些先进的 AI 技术,我们旨在增强对神经信号的解释,提高任务执行效率,并提供更直观、适应性更强的用户体验,以实现以思想为导向的结果。本文详细讨论了所提出的方法,强调了其潜在优势和需要解决的挑战。最后,我们概述了未来的研究方向以及将先进的 AI 代理与 iBCI 相结合用于各种应用的前景,包括神经康复、辅助技术和人类增强。
黄油含量(又称矩形)是一个循环图案1,在图形分析中至关重要。尤其是,在两部分图上[41,61,3,97]上,But-Ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-terlif y [78,80,77,76],可以将顶点分为两个不相交组,并且仅在两组Vertices之间进行边缘。考虑图G =(v,e),其中v和e分别是ver和边缘的集合。黄油粉计数的问题是计算G中的黄油含量总数。黄油流数在许多应用中起着重要的作用,例如垃圾邮件检测[19,81,82],推荐系统[70],单词文献集群[16],研究小组识别[15],并根据传输理论[11]链接前词典。最近,Lyu等。[46]在电子商务的欺诈检测场景中,将黄油计算到修剪的顶点。
希望,H.(2010)。 Holm 的顺序 Bonferroni 程序。 Antonacci , Y.、Barà , C.、Zaccaro , A.、Ferri , F.、Pernice , R. 和 Faes , L. (2023)。时变信息测量:应用于脑心相互作用的信息存储的自适应估计。网络生理学前沿,3,1242505。Asadzadeh, S., Rezaii, T., Beheshti, S., Delpak, A., & Meshgini, S. (2020)。系统评价卵源定位技术及其在脑异常诊断中的应用。神经科学方法杂志,339,108740。Averta, G.、Barontini, F.、Catrambone, S.、Haddadin, G.、Held, JP、Hu, T.、Jakubowitz, E.、Kanzler, CM、Kühn, J.、Lambarcy, O.、Leo, A.、Obermeier, E. 和 Ricciardi, E. (1999)。.、Schwarz, A.、Valenza, G.、Bicchi, A. 和 Bianchi, M. (2021)。 U-limb:关于健康和中风后手臂运动控制的多模式、多中心数据库。 GigaScience,10(6),giab043。 Babo-Rebelo、M.、Wolpert、N.、Adam、C.、Hasboun、D. 和 Tallon-Baudry、C. (2016)。心脏监测功能是否与默认网络和右前岛叶中的自我相关?伦敦皇家学会哲学学报。 B 系列,生物科学,371 (1708),20160004。Bagur, S., Lefort, J. M., Lacroix, M. M., de Lavilléon, G., Herry, C., Chouvaeff, M., Billand, C., Geoffroy, H., & Benchenane, K. (2021)。呼吸驱动的前额叶振荡可以独立于启动而调节由条件性恐惧引起的冻结的维持。自然通讯, 12(1), 2605. Barà, C., Zaccaro, A., Antonacci, Y., Dalla Riva, M., Busacca, A., Ferri, F., Faes, L., & Pernice, R. (2023)。用于评估心跳引起的皮质反应的信息存储的局部和整体测量。生物医学信号处理和控制,86,105315。Benarroch,EE(1993)。中央自主神经网络:功能组织、功能障碍和观点。在《梅奥诊所学报》(第 68 卷,第 988-1001 页)。爱思唯尔。 Benarroch,EE(2012)。中枢自主神经控制。在自主神经系统入门书中(第 9 - 12 页)。爱思唯尔。 Candia-Rivera,D.(2023 年)。根据庞加莱图得出的交感神经-迷走神经活动测量值来模拟大脑-心脏的相互作用。方法X、10、102116。Candia-Rivera, D.、Catrambone, V.、Barbieri, R. 和 Valenza, G. (2022)。双向皮质和周围神经控制对心跳动力学的功能评估:热应力的脑心研究。神经图像, 251, 119023。Candia-Rivera, D., Catrambone, V., Thayer, J. F., Gentili, C., & Valenza, G. (2022)。心脏交感迷走神经活动引发大脑 - 身体对情绪唤起的功能性反应。美国国家科学院院刊,119(21),e2119599119。 Candia-Rivera、D.、Catrambone、V. 和 Valenza、G. (2021 年)。脑电图电参考在评估脑-心功能相互作用中的作用:从方法论到用户指南。《神经科学方法杂志》,360,109269。Candia-Rivera, D.、Norouzi, K.、Ramsøy, TZ 和 Valenza, G. (2023)。精神压力下上升式心脑通讯的动态波动。《美国生理学-调节、整合和比较生理学杂志》,324 (4),R513 – R525。Catrambone, V.、Averta, G.、Bianchi, M. 和 Valenza, G. (2021)。走向脑-心计算机接口:使用多系统方向估计对上肢运动进行分类的研究。神经工程杂志,18 (4),046002。Catrambone, V.、Greco, A.、Vanello, N.、Scilingo, EP 和 Valenza, G. (2019)。通过合成数据生成模型进行时间分辨的定向脑-心脏相互作用测量。生物医学工程年鉴,47,1479 – 1489。Catrambone, V.、Talebi, A.、Barbieri, R. 和 Valenza, G. (2021)。时间分辨的脑-心脏概率信息传递估计
目的 . 皮层内微刺激是当代脑机接口中恢复感官知觉的有效方法。然而,更好地控制神经元反应的机制以及神经元活动与刺激部位周围发生的其他伴随现象之间的关系仍不太清楚。方法 . 使用宽视野和双光子成像在 Thy1-GCaMP6s 小鼠体内研究了不同的微刺激频率,以评估在多个空间尺度上引起的兴奋性神经反应以及诱发的血流动力学反应。具体而言,我们量化了刺激引起的小鼠视觉皮层神经元激活和抑制,并使用中观尺度宽视野成像测量了血流动力学氧合血红蛋白和脱氧血红蛋白信号。主要结果 . 我们的钙成像结果显示,低频刺激更有利于驱动更强的神经元激活。神经 28 激活后的抑郁反应偏好与激活相比略高频率的刺激。血流动力学信号 29 表现出与神经钙信号相当的空间扩展。在激活后(抑郁)期间,刺激部位周围的氧合血红蛋白浓度保持升高。通过双光子显微镜测量的躯体和神经纤维网钙 31 反应显示出对刺激参数的相似依赖性,32 尽管在躯体中测得的幅度大于在神经纤维网中。此外,与神经纤维网相比,更高频率的 33 刺激在躯体中诱导更明显的激活,而抑郁 34 主要在躯体中诱导,与刺激频率无关。意义。这些结果表明 35 抑郁症的潜在机制不同于激活,需要充足的氧气供应,并影响 36 神经元。我们的研究结果为皮层内微刺激引起的兴奋性神经元活动提供了新的理解,并为利用激活和抑制现象来实现所需神经反应的神经装置提供了见解。
摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。