摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2022 年 5 月 4 日发布。;https://doi.org/10.1101/2022.03.30.486457 doi:bioRxiv preprint
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2022 年 3 月 28 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
1 西北工业大学无人系统研究所,西安 710072;2 西北工业大学机电学院空天微纳系统教育部重点实验室,西安 710072;3 西北工业大学协同创新中心,上海 201108;4 诺艾克科技(中国)有限公司,常州 213100;5 杭州电子科技大学电子信息学院,杭州 310018;6 军事科学院国防创新研究院,北京 100071;7 天津人工智能创新中心,天津 300450; 8 上海交通大学微纳电子学系, 国家级微纳加工技术重点实验室, 上海 200240
标题:皮层内微刺激脉冲波形和频率招募皮层神经元和神经纤维网激活的不同时空模式。作者:Kevin C. Stieger 1,2、James R. Eles 1、Kip A. Ludwig 3-5、Takashi DY Kozai 1,2,6-8 附属机构:1. 匹兹堡大学生物工程系,宾夕法尼亚州匹兹堡 2. 匹兹堡大学认知神经基础中心,卡内基梅隆大学,宾夕法尼亚州匹兹堡 3. 威斯康星大学麦迪逊分校生物医学工程系,威斯康星州麦迪逊 4. 威斯康星大学麦迪逊分校神经外科系,威斯康星州麦迪逊 5. 威斯康星转化神经工程研究所 (WITNe),美国威斯康星州麦迪逊 6. 匹兹堡大学神经科学中心,宾夕法尼亚州匹兹堡 7. 匹兹堡大学麦高恩再生医学研究所,宾夕法尼亚州匹兹堡 8. 匹兹堡大学脑神经技术中心宾夕法尼亚州匹兹堡研究所
保留所有权利。未经许可不得重复使用。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此版本的版权所有者于 2021 年 12 月 31 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
1 杜克大学生物医学工程系,北卡罗来纳州达勒姆 2 杜克大学电气与计算机工程系,北卡罗来纳州达勒姆 3 杜克大学神经生物学系,北卡罗来纳州达勒姆 4 杜克大学神经外科系,北卡罗来纳州达勒姆 5 西北大学生理学系,伊利诺伊州芝加哥 6 西北大学生物医学工程系,伊利诺伊州芝加哥 7 西北大学物理医学与康复系,伊利诺伊州芝加哥 8 芝加哥大学生物生物学与解剖学系,伊利诺伊州芝加哥 9 芝加哥大学计算神经科学委员会,伊利诺伊州芝加哥 10 芝加哥大学神经科学研究所,伊利诺伊州芝加哥 * 通讯作者:Warren M. Grill,博士,杜克大学生物医学工程系 Rm。 1427, Fitzpatrick CIEMAS 101 Science Drive, Campus Box 90281 Durham, NC, 27708, 美国 warren.grill@duke.edu 919 660-5276 电话 919 684-4488 传真
前言................................................................................................................................................ xvii
无线皮层内脑机接口 (iBCI) 的功效部分受限于记录通道的数量,而记录通道的数量又受植入式系统功率预算的限制。设计能够提供当今有线神经接口的高质量记录的无线 iBCI 可能会导致无意中过度设计,而这又会以牺牲功耗和可扩展性为代价。我们在这里分析了从恒河猴实验性 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者那里收集的神经信号,以了解信号质量和解码器性能之间的权衡。我们为临床可行的 iBCI 提出了一种高效的硬件设计,并建议可以大大放宽当前记录 iBCI 的电路设计参数而不会损失性能。
无线皮层内脑机接口 (iBCI) 的功效部分受限于记录通道的数量,而记录通道的数量又受植入式系统功率预算的限制。设计能够提供当今有线神经接口的高质量记录的无线 iBCI 可能会导致无意中过度设计,而这又会以牺牲功耗和可扩展性为代价。我们在这里分析了从恒河猴实验性 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者那里收集的神经信号,以了解信号质量和解码器性能之间的权衡。我们为临床可行的 iBCI 提出了一种高效的硬件设计,并建议可以大大放宽当前记录 iBCI 的电路设计参数而不会损失性能。