摘要:在亚大气压条件下,对不同当量比的预混甲烷-空气火焰的层流火焰速度进行了实验测量,温度为 852 mbar 和 298 K。使用矩形端口燃烧器和水冷却系统获得火焰,水冷却系统是维持混合物温度恒定所必需的。使用 ICCD 相机捕获火焰中存在的 OH-CH 自由基发出的化学发光,从而定义火焰前沿。使用锥体方法计算层流火焰速度,并将实验结果与其他作者报告的结果以及使用软件 CHEMKIN 使用 GRIMECH 3.0 机制进行的数值模拟进行了比较。这项研究发现,将气压从 1013 mbar 降低到 852 mbar 可使层流火焰速度增加 7%。
在流动的后期,火焰浮力运动引起的速度可高达 1 m/s,产生的雷诺数为 2 × 10 4 。这些值意味着在远离火焰片和容器壁的区域,粘性剪应力与惯性相比可以忽略不计。在火焰片附近,更重要的特征长度是火焰厚度 δ,它将产生 Re ∼ 1。但是,如果火焰附近的速度梯度不大,那么在计算火焰结构时也可以忽略剪应力。在本研究中就是这种情况,因为我们只考虑在静止混合物中传播的层流火焰。流动梯度主要在法线方向,从而产生与压力相比非常小的粘性应力。
在流动的后期,火焰浮力运动引起的速度可高达 1 m/s,产生的雷诺数为 2 × 10 4 。这些值意味着在远离火焰片和容器壁的区域,粘性剪切应力与惯性相比可以忽略不计。在火焰片附近,更重要的特征长度是火焰厚度 δ,它将产生 Re ∼ 1。但是,如果火焰附近的速度梯度适中,那么在计算火焰结构时也可以忽略剪切应力。在本研究中就是这种情况,因为我们只考虑在静止混合物中传播的层流火焰。流动梯度主要在法线方向,导致粘性应力与压力相比非常小。
日本内阁府在2014财年至2018财年的5年期间,在跨部委战略创新促进计划 (SIP) 中组织了一项重大项目“创新燃烧技术”。演讲介绍了汽油燃烧团队与28所大学合作对汽油发动机超稀薄燃烧概念的研究和开发。为了使汽油SI发动机的热效率达到50%,稀薄燃烧操作是通过低温燃烧减少热损失来提高热效率的有效技术之一。单缸SIP原型发动机采用过量空气比超过2.0的超稀薄混合气,以将燃烧温度降至2,000K以下,并减少热损失和NOx排放。然而,由于层流火焰速度降低导致燃烧持续时间延长,以及循环间燃烧波动和/或熄火增加,成为实现超稀薄燃烧发动机的障碍。因此,原型发动机设计为产生25m/s的高强度滚流,并利用滚流塌陷产生的湍流加速燃烧的效果。该发动机的火花点火系统比传统发动机的放电持续时间长10倍,放电能量更高,实现了稳定的循环点火和燃烧。
FZJ-3 REKO-3 流动反应器 强制流动条件下的 H2 重组 FZJ-4 REKO-4(在建) 压力容器 自然流动条件下的 H2 重组 FZK-1 A1 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-2 A3 容器 圆柱形容器 湍流燃烧和爆轰,通风爆炸,H2 分布 FZK-3 A6 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-4 12 米爆轰管 (DT) 圆柱管 湍流燃烧、DDT 和稳态爆轰,化学动力学 FZK-5 流动测试室 (TC) 矩形室通风燃烧和爆轰;H2 分布,通风系统测试。 FZK-6 部分通风爆炸管 (PET) 带可变开口的圆柱管 通风爆炸,湍流。火焰传播、火焰加速和 DDT FZK-7 A8 容器 圆柱形容器 湍流燃烧和爆轰、通风爆炸、H2 分布 FZK-8 爆炸弹 球形容器 可燃性极限、最小点火能量、层流火焰速度、化学 FZK-9 HyJet 水平/垂直氢气喷射 加压容器中的氢气释放、氢气浓度和 GC-1 168 m³ 开放式几何结构(内部有障碍物) 爆炸容器在开放、拥挤的几何形状中的爆炸 GC-2 1:3.2 比例海上模块爆炸容器在真实几何形状中的通风爆炸