摘要 为降低电力的净现值,针对配备电动汽车 (EV) 的家庭,开发了一种实用的并网屋顶太阳能光伏 (PV) 和电池储能 (BES) 优化定型模型。通过创建新的基于规则的家庭能源管理系统,研究了两种系统配置:(1) PV - EV 和 (2) PV - BES - EV,以实现 PV 和 BES 的优化定型。使用随机函数结合电动汽车可用性(到达和离开时间)及其到家时的初始充电状态的不确定性。研究了市场上流行的电动汽车模型对客户的最佳定型和电力成本的影响。根据电网约束、零售价格和上网电价的变化,采用了几种敏感性分析。根据日照、温度和负载的变化提供了不确定性分析,以验证所开发模型的最佳结果。为典型并网家庭中的住宅客户提供了实用指南,帮助他们在考虑 EV 模型的情况下选择最佳 PV 或 PV-BES 系统容量。虽然所提出的优化模型是通用的,可以用于各种案例研究,但澳大利亚案例研究使用了太阳辐射、温度、家庭负荷、电价的实际年度数据以及 PV 和 BES 市场数据。开发的最佳规模模型也适用于澳大利亚不同州的住宅家庭。
关于 SP 集团 SP 集团是亚太地区领先的公用事业集团,为客户提供低碳、智能能源解决方案,赋能能源未来。集团在新加坡和澳大利亚拥有并经营电力和天然气输送和配送业务,在新加坡、中国、越南和泰国提供可持续能源解决方案。作为新加坡的国家电网运营商,约有 160 万工业、商业和住宅客户受益于其世界一流的输电、配电和市场支持服务。这些网络是全球最可靠、最具成本效益的网络之一。 除了传统的公用事业服务外,SP 集团还为新加坡和该地区的客户提供一系列可持续和可再生能源解决方案,如微电网、商业区和住宅镇的制冷和供暖系统、太阳能解决方案、电动汽车快速充电和数字能源解决方案。 欲了解更多信息,请访问 spgroup.com.sg 或关注我们的 Facebook(fb.com/SPGroupSG)和 LinkedIn(spgrp.sg/linkedin)。
正在面临着浪费的产生,并且伴随着处理这种废物的问题。由于农业和农业领域的活动增加,产生了大量的生物质废物,这导致了环境危害和废物管理问题。在另一种情况下,由于建筑物在整个白天直接暴露于太阳辐射,这会增加建筑物外部和内部的温度,因此冷却室内建筑环境的能耗很高。大多数低中等成本的住房方案都是使用金属屋顶覆盖物构建的,而没有提供屋顶隔热层,从而导致室内温度上升并产生不舒服的环境。此外,现有在市场上用于屋顶绝缘的材料,使用可能损害人类健康的无机合成材料。该研究旨在调查农业废物在生产屋顶板绝缘材料中的潜在用途,这些材料可以为农业废物提供经济价值,减少环境问题并提供环保,可持续的建筑材料。在这项研究中,这些农业废物以不同的比例组合为50%的单个纤维,例如带有椰子壳的甘蔗甘蔗渣,带有中果纤维的空水果束,椰子壳,带有空的水果束,甘蔗渣和含有Mesocarp纤维的甘蔗。样品是使用热压机制造的,并进行了各种物理和机械测试,涉及肿胀的厚度,破裂模量和导热率。发现的发现表明,空的水果束和中果纤维的混合纤维达到了所有标准,例如密度(427 <500kg/m 3);肿胀的厚度(19 <20%);破裂模量(514 <800PSI),导热率(0.0856 <0.25 W/m.k)符合每项进行的每个实验室测试中的标准要求。这项研究的结果表明,空的水果束和中果纤维是生产屋顶板热绝缘的潜在材料。但是,需要修改废物的物理和机械性能以实现卓越的性能,并准备在市场中提供。本研究与政府一致
截至 2022 年 3 月 31 日,印度的住宅屋顶太阳能容量可能仅为 2,010 兆瓦 (MW)。但由于成本节约需求不断增长以及消费者意识不断提高,我们预计未来几年住宅屋顶太阳能安装将迅速加速。到 2023 财年末,我们预计累计住宅屋顶太阳能容量将达到 3,214MW,同比增长近 60%。我们注意到,中央政府最近采取措施创建一个单一的国家数字门户网站,以简化住宅消费者屋顶太阳能安装流程,并正式建立补贴的直接利益转移机制,这将有助于该领域的需求。我们对各州屋顶太阳能安装吸引力的评估发现,古吉拉特邦、哈里亚纳邦和马哈拉施特拉邦是三个最有利的邦。展望未来,我们建议各州政府采取一致努力,加快和简化净计量和补贴相关程序。他们还必须减少国家电力配送公司对住宅屋顶太阳能安装整个过程的干预。
这项由 UKWA 委托的研究项目调查了在仓储行业安装屋顶太阳能光伏 (PV) 系统的整体情况。过去 10 年来,仓储业通过改善照明、电气化物料搬运和系统效率稳步提高能源效率;然而,屋顶太阳能项目的扩张速度较慢。由于仓储业拥有约三分之一的商业屋顶空间,因此它在支持太阳能光伏发电的推广方面具有巨大的潜在作用。
摘要:近零能耗建筑在全球范围内不断增加,利用低碳技术进行供暖和电力自产。商业建筑越来越多地被视为安装智能微电网的候选对象,这些建筑可能受益于白天停放在充电场的员工电动汽车电池的额外存储容量。巧妙地利用这些电力源和电力吸收器的相互作用可能对解决当今快速变化的能源结构中复杂的电网需求模式至关重要。通过 TRNSYS 环境中的瞬态模拟,研究了高效办公楼能源系统与大型屋顶光伏装置以及连接在建筑充电场的 40 辆电动汽车的总存储容量之间的相互作用。根据希腊网络的各自需求曲线,按月、按季和按小时分析了 18 个区域建筑的供暖、通风和空调系统、汽车电池和光伏系统的相互作用。结果表明,特定系统的规模可以有利地支持智能微电网的运行。这座建筑的年总用电量估计达到 112,000 千瓦时,即 20 千瓦时/平方米。40 辆电动汽车的年用电量为 101,000 千瓦时,30% 的光伏发电量即可完全满足。因此,该建筑成为电网的净电力输出者,每天的最大输出电量发生在 12:00 至 14:00 之间,这有利于满足需求曲线。因此,在商业建筑中建立智能微电网,屋顶光伏板容量大,员工车队中有相当数量的电动汽车,在这方面非常有效。
西澳大利亚州三分之一以上的家庭安装了太阳能电池板,屋顶太阳能发电已在中午满足了我们 64% 的电力需求。这种分布式太阳能发电量取代了其他能源系统中对太阳能发电场的需求。
答:2021 年 12 月,加州公用事业委员会提出了一套新规则(称为 NEM 3.0),规定 PG&E 和其他投资者所有的公用事业公司 (IOU) 必须如何补偿屋顶太阳能客户,以补偿其太阳能电池板产生的能源,以及他们应支付多少费用才能接入电网。总体而言,拟议的规则将导致对输出到电网的能源的补偿减少,并产生大量新的 IOU 费用。2022 年 2 月,CPUC 无限期推迟了对拟议的 NEM 3.0 规则的投票。如果您正在考虑安装太阳能,如果您想利用当前的 NEM 2.0 补偿系统,尽早进行投资可能是明智之举。