人们正在考虑将地下多孔含水层用作可再生能源压缩能量储存的储层。在这些系统中,在产量超过需求时注入气体,在需求高峰或产量不足时提取气体用于发电。目前运营的地下能源设施使用盐穴进行储存,使用空气作为工作气体。二氧化碳可能是更受欢迎的工作气体选择,因为在储存条件下,二氧化碳具有高压缩性,可以提高运营效率。然而,二氧化碳和盐水在储存区边界的相互作用会产生化学活性流体,从而导致矿物溶解和沉淀反应,并改变储存区的性质。本研究旨在了解在注入、储存和提取流动周期中使用二氧化碳作为工作气体的地球化学影响。这里,根据 Pittsfield 现场测试的时间表,基于 7 小时注入、11 小时提取和 6 小时储层关闭开发了反应性传输模拟,以评估储层的地球化学演化,运行寿命为 15 年。将存储系统中的演化与 12 小时注入和提取的连续循环系统进行比较。运行时间表研究的结果表明,矿物反应发生在域的入口处。此外,在两个系统中,在 CO 2 酸化盐水循环过程中,内部域的孔隙度得以保留。
现代加速器首选非侵入式测量方法来表征束流参数。电离轮廓监测器 (IPM) [1–3] 和束流诱导荧光监测器 (BIF) [4–8] 被广泛用作许多加速器中的非侵入式束流轮廓监测器。在此类监测器中,粒子束与残留气体相互作用,导致气体分子电离或发射荧光。束流与气体相互作用产生的副产物可以通过外部电磁场(离子和电子)收集,或使用独立光学系统(荧光)检测,以提供初级束流的一维分布信息。根据背景压力水平,它们通常需要较长的积分时间或加载额外的工作气体。后者将产生较大的压力凸起区域,并可能导致初级束流性能下降
氢气 (H 2 ) 有可能成为低碳经济中替代碳氢化合物的清洁燃料替代品,而 H 2 储存是新兴 H 2 价值链的关键组成部分。然而,将 H 2 用于大容量电力管理和其他工业应用将需要大幅扩大地质储存的规模。虽然地质 H 2 储存可以在盐层内的多孔介质和盐穴中进行,但盐穴因其大储存容量、密封完整性和灵活的操作以及较大的注入和提取速率而被认为是地下 H 2 储存的最佳选择。这项研究收集了位于美国墨西哥湾盆地陆上和近海地区的 569 个盐丘的综合数据库。这项工作通过选择没有预先存在的洞穴并且深度范围适合盐穴建设的陆上盐丘来筛选数据库。因此,我们选择并分析了德克萨斯州、路易斯安那州和密西西比州 98 个适合储存 H 2 的陆上盐丘。我们针对三种情形进行了 H 2 存储容量计算:低情况、基准情况和高情况。对于基准情形,我们估计这些盐丘总共可容纳 2550 个洞穴,总工作气体潜力为 130 Gsm 3 ,相当于总能量存储潜力为 368 TWh。根据我们的基础情形,美国天然气消耗量 10% 的替代需要 28 Gsm 3 的 H 2 存储容量。这个数字意味着需要建造或重新利用超过 556 个盐丘,每个盐丘的几何体积为 0.75 Mm 3 。这是此类研究中的首例,按州、县和德克萨斯州、路易斯安那州和密西西比州的单个盐丘细分了 H 2 存储潜力。本研究的结果为评估美国盐丘的 H 2 储存潜力提供了宝贵的信息,有助于制定未来 H 2 基础设施的开发战略。最后,我们为读者提供了一张显示本研究结果的交互式地图。