o 它代表了封装技术的进步,提高了功能密度,并提高了工作频率。这些是基于陶瓷的单芯片系统级芯片 (SoC),采用非密封倒装芯片结构,采用高引脚数陶瓷柱栅阵列 (CGA) 封装。这些产品使用微型基极金属 (BME) 电容器来保证信号完整性,并使用通风封装来进行热管理。(例如 Xilinx Virtex-4 FPGA)
• 它代表了封装技术的进步,提高了功能密度并提高了工作频率。这些是基于陶瓷的单芯片系统级芯片 (SoC),采用非密封倒装芯片结构,采用高引脚数陶瓷柱栅阵列 (CGA) 封装。这些产品使用微型基极金属 (BME) 电容器来实现信号完整性,并使用通风封装来实现热管理。(例如 Xilinx Virtex-4 FPGA)
1 典型值为 T A = 25°C 和 V CC = 12 V。在规定的最大和最小限度内,单个单元的性能可能有所不同。2 必须根据功耗和结温调整最大电压;请参阅功率降额部分。3 负电流定义为从指定设备端子流出(源自)的常规电流。4 超过钳位电压的持续电压可能会对 IC 造成永久性损坏。5 脉冲持续时间在 V PULLUP / 2 的阈值处测量。6 工作频率(反向旋转)和工作频率(无方向脉冲)的最大值由输出脉冲的令人满意的分离决定:V OUT(HIGH) 为 t w(FWD)(最小值)。如果客户能够解决较短的高状态持续时间,则最大 f FWD 、f REV 和 f ND 可能会增加。7 如果在信号变化事件期间或之后未保持最小信号相位分离,则输出可能会消隐或出现无方向脉冲。通电期间的信号变化事件可能会增加获得正确方向脉冲所需的边沿数量。8 通电频率 ≤ 200 Hz。更高的通电频率可能需要更多的输入磁循环,直到实现定向输出脉冲。
SAMD21RT 是一款基于 32 位 Arm ® Cortex ® -M0+ 处理器的低功耗、耐辐射微控制器 (MCU)。它具有 128 KB 闪存和 16 KB SRAM,以及集成的模拟功能,采用小型 64 引脚封装。SAMD21RT 的最大工作频率为 48 MHz,达到 2.46 CoreMarks ® /MHz。该系列中的所有设备都包括智能灵活的外设、用于外设间信号传输的事件系统,并支持电容式触摸按钮、滑块和滚轮用户界面。
变容二极管调谐 LC 振荡器与分频器一起为 AM 和 FM 前端混频器提供 LO 信号。VCO 的工作频率约为 160 MHz 至 256 MHz。在 FM 模式下,LO 频率除以 2 或 3。这些分频器生成用于 FM 前端混频器以进行镜像抑制的同相和正交相位输出信号。在天气波段模式下,LO 信号直接相移以生成同相和正交相位信号。在 AM 模式下,LO 频率除以 6、8、10、16 或 20,具体取决于所选的 AM 波段。
图 2. 声子介导的量子态转移和过程层析成像。a 测量的 Q 1 激发态群体 PQ 1 e 与时间和 Q 1 裸频率的关系,耦合器 G 1 处于中间耦合 κ 1 / 2 π = 2.4 MHz(在 3.976 GHz 处测量),G 2 设置为零耦合。在这种配置中,Q 1 的能量弛豫主要由通过 UDT 1 的声子发射主导,其次是行进声子动力学。白色和红色虚线分别表示单向和双向工作频率(见正文);插图显示量子位激发和测量脉冲序列。b 通过行进声子在单向(左)和双向(右)工作频率下进行量子态转移。与单向传输相比,双向传输的 Q 2 的最终群体要小 4.5 倍,这与模拟结果一致。绿色实线来自主方程模拟。插图:脉冲序列。对于任一过程,Q 1 的发射率均设为 κ uni | bi c / 2 π = 10 | 6 MHz,对应于 81 | 138 ns 的半峰全宽 (FWHM) 声子波包。c 单向和双向区域的量子过程层析成像,过程保真度分别为 F uni = Tr ( χ exp · χ ideal ) = 82 ± 0 . 3 % 和 F bi = 39 ± 0 . 3 %。红色实线显示理想传输的预期值;黑色虚线显示主方程模拟,其中考虑了有限量子比特相干性和声子通道损耗。不确定性是相对于平均值的标准偏差。
2.1 RFID 的历史................................................................................11 2.2 RFID 系统.................................................................................12 2.2.1 组件..............................................................................13 2.2.2 标签..............................................................................14 2.2.3 读取器..............................................................................15 2.2.4 天线.............................................................................16 2.2.5 扫描仪.............................................................................17 2.2.6 读取范围......................................................................17 2.2.7 工作频率......................................................................18 2.3 RFID 的用途.............................................................................19 2.4 RFID 的优势.............................................................................20 2.5 RFID 的局限性.............................................................................21 2.5.1 标准化.............................................................................21 2.5.2 金属和液体干扰.............................................................22 2.5.3 读取范围.............................................................................22 2.5.4 成本.............................................................................23 2.6 RFID 在其他行业中的应用 ................................................................ 24 2.6.1 运输 .............................................................................. 24 2.6.2 安防 .............................................................................. 25
人们对有线和无线通信速度、汽车雷达分辨率和网络基础设施带宽的需求正在推动无线通信向更高数据速率和更高频率发展。随着这些工作频率和数据速率增加到每秒数百千兆位和数十至数百千兆赫,生成、处理、传输和接收这些信号的设备尺寸正在缩小,甚至完整的无线系统都建立在单个 IC 上。此外,随着系统级封装 (SiP)、片上系统 (SoC) 和三维集成电路 (3D IC) 技术的发展,这些 IC 的复杂性也在增加,以适应更高的数据速率、传输速度、内存和处理能力,以满足这些最新应用的性能要求 [1,2,3]。
NEC Doherty 发射器的核心理念是让客户始终享受每个选定通道的最佳能效(高达 38%)。通过最初将每个 PA 单元的工作频率固定在单个通道中,DTU-70D 实现了最有益和最合适的 Doherty 发射器形式。一旦用户需要更改通道频率,将需要一些时间和工作。但该过程很简单;只需更换放大器的几个组件,既不需要任何特殊仪器也不需要技能。客户可能需要承担这么小的负担,但不必再担心令人愉悦的性能会根据指定通道而波动。将有效确保最低的终身成本解决方案(CAPEX 和 OPEX 效率)。