图 7 实验示意图。1. 从蜂群中挑出蜂王放入产卵盘中。2. 将产卵盘放入气候室中 1 小时。3. 1 小时后检查盘中是否有卵。如果蜂王已经产卵,则将蜂王转移到新的干净盘中继续产卵。4. 继续收集卵 4-5 小时,然后将蜂王放回自己的蜂群。5. 用细刷将卵排列成一条线靠在盘壁上,准备注射。6. 玻璃毛细管针上装有六种 CRISPR-Cas9 构建体中的一种。7. 60% 的卵注射了 CRISPR-Cas9 构建体,20% 的卵注射了水,20% 的卵作为未注射的对照。8. 根据处理方法将卵转移到自己的饲养巢中,以便工蜂照顾它们并将它们养育成成年
摘要 蜜蜂利用蜂王浆控制的 DNMT3 介导的表观遗传机制产生两种不同的雌性种姓,即长寿的可育蜂王和短命的不育工蜂。幼虫中 DNMT3 的抑制作用模拟了蜂王浆在成年雌蜂中发生的表型变化。蜜蜂基因组中需要解决的一个关键问题是确定蜂王浆中抑制 DNMT3 并从而决定发育命运的表观遗传活性化合物。进行了分子对接、MMGBSA 分析和 MD 模拟,以确定蜂王浆中抑制 DNMT3 的主要候选多酚化合物。十三种多酚化合物与 DNMT3 对接,并使用两个基本指标 XP GScore 和 MMGBSA dG Bind 来评估结合亲和力。观察到的结合亲和力最高的是木犀草素 7-O-葡萄糖苷,对接得分为 −10.3,山奈酚 3-O-葡萄糖苷为 −8.9。此外,这两种化合物的总结合能分别高达 −52.8 和 −64.85 kJ/mol。MD 模拟表明,与山奈酚 3-O-葡萄糖苷不同,木犀草素-7-O-葡萄糖苷在整个模拟期间与 DNMT3 保持一致的相互作用。这些结果表明,在蜂王浆中的 13 种多酚化合物中,木犀草素-7-O-葡萄糖苷是最有希望成为这种饮食中负责大部分 DNMT3 抑制活性的成分的候选者。