同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
大量核素和电子的自组织导致物质出现不同相。相代表一种可以在空间上无限复制的组织方式,其特性会随着外场的变化而不断变化,与其他相不同。因此,当材料经历相变时,某些系统特性会发生变化。相变的一般特征是,它要么涉及根据相变的朗道范式 1 – 3 的序参量的不连续性,要么涉及拓扑不变量的变化 4、5。发现、表征和控制物质的不同相是凝聚态物理学和材料科学的核心任务。特别是,对二维系统中相变的研究在促进我们对相变的理解方面发挥了至关重要的作用(图 1)。 2D 材料 6 – 10 是可以在两个方向上无限复制,但在第三个方向上具有原子级厚度的物质。例如,单层 MoS 2 的厚度为 6.7 Å,在通过机械剥离 6 制备的实验室样品中,平面内厚度通常为微米,因此,其长宽比为 ~10 3 或更大。为了进行比较,一张典型的 A4 大小的纸(~100 μm × 29.7 cm × 21 cm)的长宽比也相似,为 ~10 3 。虽然 2D ↔ 3D/1D 相变无疑是有趣的讨论主题,但在这里,我们重点关注 2D → 2D 转变。最早对 2D 相变的研究大多是理论上的;例如二维 Ising 自旋模型的精确解 11 、 Hohenberg–Mermin–Wagner 定理的提出 12 , 13 以及 Kosterlitz–Thouless 转变的发现 14 , 15 (图 1 )。20 世纪 80 年代初,半导体技术的进步使得人们能够实验研究半导体界面和强磁场下的二维电子系统,从而带来了突破性的
本研究旨在制定 Assamsi Media Group 在 Covid-19 大流行期间可以实施的营销策略。这种类型的研究是实地研究,通过调查方法加强,使用比例分层随机抽样方法对两个样本类别进行调查,最终获得 52 名消费者受访者和 3 名公司内部受访者。使用的分析工具是定量 SWOT,以确定公司的当前状况,以便最终的营销策略选择更加精确和可衡量。通过营销组合审查了研究的内部因素,通过供应商、客户、经济和社会文化审查了外部因素。结果表明,可以实施的最佳策略是启动策略,即通过使用数字信息技术将办公室的物理存在替换为虚拟存在,以建立交互式网站并以视频的形式准备具有优质内容的广告以及公司通过社交媒体传播的能力。关键词:营销策略、事件营销、定量 SWOT
牛结核病在经济上重要的疾病,整个全球范围很广泛。牛分枝杆菌是在物种之间或物种内部传播的病因。从传输途径中,气溶胶吸入是主要的。毒力和宿主因子是确定感染并广泛控制传播方式的关键。如今,传染病很容易鉴定和表征。同样,根据OMICS分析和生物信息学工具的开发简化了抗生素和疫苗发现。因此,转录组被认为是最有用的测定法,以便从功能基因组学开始,以探索个体的基因型与表型之间的关系。转录组分析用于了解疾病的发病机理和负责保护性免疫反应的基因的机制。可以确定与称为生物标志物的特定疾病相关的基因。使用蛋白质组学蛋白质表达可以用3D结构和蛋白质功能描述,这些功能以蛋白质,糖蛋白的作用以及如何表达蛋白质以及巨噬细胞水平,DC和淋巴细胞细胞或组织的总体蛋白质组受到牛杆菌感染的反应影响。
电子产品已被用于各种应用,如可以监测周围环境的热量、质地、压力和应变的人工智能皮肤[6,7],以及可拉伸的锂离子电池[8],它可用作全柔性电路的电源。在传感领域,人们希望能够随着皮肤和器官等生物表面变形的传感器能够获得更可靠、更准确的信息,而柔性生物传感器是此类应用的有希望的候选者。最近,已经开发出具有各种机制的柔性生物传感器,包括电化学传感器[9,10]、等离子体传感器[11,12]、压电传感器[13,14]等,用于检测小分子[15,16]、蛋白质[17]、核酸[18]以及细菌[19]。
1来自丹佛国家犹太人健康部医学系(M.E.W. );麦克马斯特大学和加拿大安大略省汉密尔顿的圣约瑟夫医疗保健(P.N. );国家稀有系统性自身免疫性疾病的内科医学系,医院科钦和巴黎大学的Cité大学(B.T. ) ),以及蒙彼利埃大学呼吸系统疾病系,中心医院蒙彼利埃大学,INSERM,中心,蒙彼利埃(A.B.)中心国家de la Recherche Scientifique - 所有人都在法国;内科,风湿病学和免疫学系,德国基尔希姆·泰克大学Medius Kliniken,德国(B.W. ) );剑桥大学医学系(D.R.W.J. )以及生物制药医学(A.S.)和后期呼吸和免疫学,生物制药研究与发展(C.W. ),阿斯利康,剑桥和盖伊的严重哮喘中心,免疫学和微生物科学学院,伦敦国王学院,伦敦国王学院(D.J.J.) - 所有在英国;布鲁塞尔的Libre de Bruxelles大学内科医学系 );后期呼吸和免疫学,生物制药研究与开发,阿斯利康,哥德堡,瑞典(L.B.S.,S.N。 );后期呼吸和免疫学,生物制药研究与开发(Y.F.,M.J。)以及转化科学与实验医学,早期呼吸和免疫学,生物制药研究与发展(C.M.1来自丹佛国家犹太人健康部医学系(M.E.W.);麦克马斯特大学和加拿大安大略省汉密尔顿的圣约瑟夫医疗保健(P.N.);国家稀有系统性自身免疫性疾病的内科医学系,医院科钦和巴黎大学的Cité大学(B.T.),以及蒙彼利埃大学呼吸系统疾病系,中心医院蒙彼利埃大学,INSERM,中心,蒙彼利埃(A.B.)中心国家de la Recherche Scientifique- 所有人都在法国;内科,风湿病学和免疫学系,德国基尔希姆·泰克大学Medius Kliniken,德国(B.W.);剑桥大学医学系(D.R.W.J.)以及生物制药医学(A.S.)和后期呼吸和免疫学,生物制药研究与发展(C.W.),阿斯利康,剑桥和盖伊的严重哮喘中心,免疫学和微生物科学学院,伦敦国王学院,伦敦国王学院(D.J.J.)- 所有在英国;布鲁塞尔的Libre de Bruxelles大学内科医学系);后期呼吸和免疫学,生物制药研究与开发,阿斯利康,哥德堡,瑞典(L.B.S.,S.N。);后期呼吸和免疫学,生物制药研究与开发(Y.F.,M.J。)以及转化科学与实验医学,早期呼吸和免疫学,生物制药研究与发展(C.M.),阿斯利康,盖瑟斯堡,马里兰州;以及宾夕法尼亚大学(P.A.M.)的宾夕法尼亚大学生物统计学,流行病学和信息学生物统计学系流行病学系风湿病学系和流行病学系。
随着细菌大小的增加,表面积随着细胞体积的增加而不会增加。细菌取决于扩散物质从环境转移到细胞以及细胞内运输。单元格越大,表面积与体积比率越小。例如,该值从直径分别为10或100 um的单元格的球形单元的6下降,直径为1 um和0.6和0.06。5–7这可能会影响细菌的代谢率。这些大细菌如何解决这个问题?epulopiscium spp。具有高度折叠的细胞膜,可实现细胞表面积的增加。t Magnifica具有包含DNA和核糖体的膜结合的膜囊。8这使得可以对蛋白质和其他细胞分子进行局部合成,而无需长距离行驶的分子。此外,大型中央液泡的存在推动了大细胞周围的细胞质,进一步避免了长距离运输分子的需求。
在本研究中,首先开发了 F-16 飞机全动力学的详细非线性模型,并用 MATLAB 进行编码。该模型包括重力模型、可变大气参数、表格气动函数、推进模型、非线性控制面驱动模型和六自由度运动方程。然后开发了一种使用上述模型计算所有可能配平值的数值工具。该工具可以计算不同操作点的配平值。在开发的算法中,使用了粒子群优化 (PSO) 方法,这是一种在连续搜索空间上具有高收敛速度的元启发式方法。然后使用开发的模型围绕计算出的配平值进行模拟。模拟结果证实,基于 PSO 的配平算法可以高精度地找到所有配平值。
抽象糖尿病是一种慢性退化性疾病,原因是胰腺中缺乏胰岛素的产生或人体使用胰岛素使用的能力较低。根据世界卫生组织(WHO)的一份报告,世界上有4%的总死亡是由糖尿病引起的。国际糖尿病联合会(IDF)指出,糖尿病患者在2013年有所增加。印度尼西亚是糖尿病病例数量最多的第七名。在这项研究中,用于对糖尿病进行分类的方法是使用粒子群优化(PSO)优化的随机森林算法。这项研究使用PSO优化的随机森林分类算法的准确性为78.2%和82.1,值增加了3.9%。可以得出结论,与没有PSO优化的随机森林算法相比,PSO优化可以更好地提高分类精度值。关键字:分类,糖尿病,国际糖尿病联合会,粒子群优化,随机森林1。引言糖尿病是一种非传染性疾病,会导致患者体细胞功能的缓慢下降,其特征是当激素胰岛素的功能通常无法运行时,由于代谢干扰而导致尿液中的血糖水平升高[1]。代谢性疾病称为糖尿病是由胰岛素分泌和作用故障引起的[2]。高血糖水平会导致人体衰竭,心动脉,中风,失明和死亡等人体细胞功能受损[3]。