材料与方法 AS 数据集 本研究中,我们从基因表达综合 (GEO) 数据库 (http://www.ncbi.nlm.nih.gov/geo/) 中获得了 AS 的转录组表达谱 GSE43292 (GPL6244)、GSE57691 (GPL10558) 和 GSE125771 (GPL17586)(表 S1)。使用 R 包“limma”对 GSE43292、GSE57691 和 GSE125771 进行探针汇总、合并和背景校正。 微环境评分 ESTIMATE 算法主要基于单个样本的基因集富集分析 (GSEA),利用表达谱数据对基质细胞和免疫细胞进行评分,然后预测这两类细胞的含量。本研究采用ESTIMATE算法对动脉微环境进行评分,并使用R包绘制微环境评分的散点图,以展示样本与评分之间的关系。TPM2与微环境评分的关系以基质、免疫和ESTIMATE评分作为对差异基因筛选确定的基因进行分组的依据。使用R包“limma”研究TPM2与微环境评分之间的关系。使用受试者工作特征(ROC)曲线检验微环境评分与TPM2关系的诊断价值。加权基因共表达网络分析(WGCNA)使用R包“WGCNA”对所有基因进行WGCNA。对于WGCNA,使用72个AS样本和42个正常样本构建所有基因的共表达网络。使用样本创建邻接矩阵,然后将其转换为拓扑重叠矩阵(TOM)。利用基于TOM的差异测量方法将基因划分为不同的基因模块,最小基因模块>100,相似模块合并的阈值为0.1,利用这些值寻找在AS中发挥重要作用的模块。同时,还利用WGCNA预测模块中基因之间的互连,然后将数据导入Cytoscape软件以绘制基因之间的连接图。还利用基因本体论(GO)分析对TPM2进行了分析,并使用Cytoscape中的BiNGO插件将结果可视化。Cytoscape软件可以为生物学家提供生物网络分析和二维(2D)可视化。BiNGO插件是一种用于确定哪些GO类别在一组基因或生物网络的子图中具有统计过度表达的工具。BiNGO将给定基因集的主要功能主题映射到GO层次结构上,并将此映射输出为Cytoscape图。功能富集分析GSEA是一种可以对全基因组进行GO和KEGG(京都基因和基因组百科全书)分析的计算方法。在我们的研究中,我们根据TPM2的表达水平对样本进行分组,并使用GSEA对全基因组进行GO和KEGG分析。单基因分析 使用 R 包“limma”进行单基因差异分析。 鉴定与 AS 相关的 TPM2 比较毒理基因组学数据库 (CTD 数据库,http://ctdbase.org/) 可用于预测基因/蛋白质与疾病之间的关系。在我们的研究中,使用该数据库分析了 TPM2 与 AS 之间的关系。
OS-1 组蛋白 H1.4 乳酸化激活 MZF1 促进肝细胞癌进展 安娜·阚 1,黄叶星 1,赖志成 1,何敏科 1,石明 1 1 中山大学肿瘤防治中心,广州,中国 电子邮件:annakan@sysucc.org.cn 背景与目的:细胞内乳酸诱导的核心组蛋白赖氨酸乳酸化(Kla)驱动致癌过程。在本研究中,我们探讨 Kla 对组蛋白 H1.4 的调控以及其对致癌基因 MZF1 和肝细胞癌进展的调控。 方法:进行 ChIP-seq、ATAC-seq、RNA-seq 和 snRNA-seq 的交叉分析,以在肝癌细胞系和患者样本中寻找 Kla 靶基因。分选出 MZF1 并用 ChIP PCR 进行验证。然后构建了体外和体内实验来验证Kla和MZF1对HCC行为的作用。采用DNA pull down分析结合质谱技术来寻找MZF1的上游调节剂。识别了组蛋白H1.4,并通过ChIP PCR识别其与MZF1启动子区的直接结合。利用RNA-seq和scRNA-seq数据来搜索MZF1的下游通路。结果:对有肺转移(M1)或无肺转移(M0)的HCC患者的肿瘤活检样本进行单核RNA测序。鉴定出14个HCC细胞簇(图1A)。调节葡萄糖稳态、碳水化合物稳态、调节糖酵解过程和正向调节Wnt信号通路的通路在M1组特异性簇中富集(图1B)。因此,检查了糖酵解产物乳酸和乳酸刺激的Kla的影响。细胞功能实验显示乳酸可以增强细胞迁移(图1C)和侵袭(图1D),而乳酸抑制剂则抑制细胞功能(图1E、1F)。构建体内模型,结果与体外实验一致(图1G-1L)。随后进行多组学分析,揭示乳酸刺激的Kla的下游调控,唯一重叠的靶点为MZF1(图1M、1N)。WB结果显示在HCC细胞系(图1O、1P)和体内模型(图2B、2C)中,MZF1在乳酸和葡萄糖处理后增加,在OXA和DCA处理后降低。CUT和Tag qPCR验证了Kla在MZF1启动子区的结合(图2A)。质谱结果显示组蛋白H1.4是MZF1 DNA的直接结合蛋白(图2D)。 CUT和Tag qPCR对突变的H1.4残基进行检测,证实了其与MZF1启动子区的结合,其中K90残基的突变最为显著(图2E)。富集分析表明,在136个差异基因中,Wnt信号富集(图2F,2G)。乳酸和/或FX-11处理的HCC细胞的WB结果(图2H,2I)也证实了这一点。结论:我们发现了乳酸刺激Kla对HCC转移的潜在机制。组蛋白H1.4乳酸化直接结合在MZF1启动子区可能有助于其活化,促进HCC细胞的增殖和转移(图2J)。图:
摘要我们使用先前发布的单细胞RNA测序(SCRNA-SEQ)数据研究了MHL1和MMSC细胞系之间意外细胞融合的细胞和分子后果。我们表征了所得的细胞类型,它们的通信模式和基础基因调节网络。初始分析确定了四种不同的细胞类型(MHL1,MHL1融合,MMSC和MMSC融合),它们也通过无监督的学习也合并为三个簇。差异基因表达分析揭示了具有共享和独家基因表达的各种细胞类型关联。单细胞兼容的加权基因共表达网络分析(WGCNA)将特定基因模块与不同的细胞类型和相关的生物学过程联系起来,包括MHL1/MHL1融合中的肌肉收缩和代谢,以及MMSC Fusion中MHL1融合(ECM)形成和脂质代谢。细胞 - 细胞通信分析显示出不同的细胞间通信模式,MMSC主要充当配体和MHL1作为配体和受体。降低细胞类型的复杂性逐渐简化了通信网络并改变了途径富集,而ECM受体途径在很大程度上保持不变,只有配体受体对的小移位。有趣的是,从分析中删除亲本细胞改变了细胞类型的分配,强调了父母细胞的存在对融合结果的影响。最后,基因调节网络分析确定了驱动细胞身份的关键转录因子(TFS),从而区分具有高细胞类型特异性的主调节器和TF。这些发现证明了整合多个细胞间和细胞内通信分析方法的力量,以剖析细胞类型,通信和基因调节之间的复杂相互作用。引言细胞融合是一个生物学过程,两个细胞将其膜合并,形成单个杂化细胞1。这一基本事件在各种生物体之间的发育,繁殖和组织修复中起着至关重要的作用2。异型融合(具有不同起源的细胞的合并)提出了益处和风险的复杂相互作用。对于诸如施肥等过程至关重要,它也可能破坏细胞稳态。不同细胞环境的融合可能会对核功能产生深远影响,包括基因调节的竞争,染色体重组,甚至核射精3-5。间充质基质细胞(MSC)表现出与各种器官(包括大脑,肝脏和心脏6-13)中不同细胞类型融合的显着能力。这种细胞融合现象在发育和再生中起着关键作用,同时也有助于癌症的进展。值得注意的是,MSC融合在某些情况下表现出有益的作用,例如通过与肝细胞融合6,14,15来促进肝脏再生,并通过与肌细胞融合16,17来促进肌肉再生。但是,在许多其他情况下,MSC融合的后果仍然不确定。越来越多的证据将涉及MSC的异型融合与癌症和转移的发展联系起来,引起了人们对基于MSC的疗法的安全性18-23的严重关注。了解细胞融合的潜在机制对于区分有益结果和有害结果至关重要。这种知识将为治疗策略铺平道路,该策略利用细胞融合进行组织修复和再生,同时预防病理融合事件。
确定重复的SOX因子功能差异的分子基础,控制斑马鱼Simaran Johal 1,Randa Elsayed 2,Kristen A. Panfilio 1,3,4,Andrew C. Nelson 1* 1* 1.生命科学学院,吉布特山校园,沃里克大学,考文垂,Cv4 7al,英国2。Warwick医学院,Gibbet Hill校园,沃里克大学,考文垂,Cv4 7al,英国3。 霍恩海姆大学生物学研究所分子遗传学系。 30,70599德国斯图加特4。 动物学研究所:发育生物学,科隆大学,苏黎世大学,苏黎世大学47b,50674德国科隆 *通讯作者电子邮件:a.nelson.1@warwick.ac.ac.ac.ac.ac.ac.ac.ac.ac(acn)摘要内科胰腺。 这些器官的放置和图案依赖于左右的组织者 - 斑马鱼中称为库普弗囊泡(KV)。 转录因子Sox32和Sox17是斑马鱼Soxf亚科的成员。 Sox32和Sox17来自Teleost血统中祖先Sox17的重复。 SOX32在早期胚胎中诱导SOX17的表达,是内胚层和KV祖细胞规范所必需的。 斑马鱼Sox17与KV形态发生有关。 在哺乳动物中,Sox17对于内胚层形成至关重要,可以诱导内胚层祖细胞身份。 因此,表型证据表明斑马鱼Sox32和Sox17与哺乳动物Sox17之间的功能相似性。Warwick医学院,Gibbet Hill校园,沃里克大学,考文垂,Cv4 7al,英国3。霍恩海姆大学生物学研究所分子遗传学系。30,70599德国斯图加特4。动物学研究所:发育生物学,科隆大学,苏黎世大学,苏黎世大学47b,50674德国科隆 *通讯作者电子邮件:a.nelson.1@warwick.ac.ac.ac.ac.ac.ac.ac.ac.ac(acn)摘要内科胰腺。这些器官的放置和图案依赖于左右的组织者 - 斑马鱼中称为库普弗囊泡(KV)。转录因子Sox32和Sox17是斑马鱼Soxf亚科的成员。Sox32和Sox17来自Teleost血统中祖先Sox17的重复。SOX32在早期胚胎中诱导SOX17的表达,是内胚层和KV祖细胞规范所必需的。斑马鱼Sox17与KV形态发生有关。在哺乳动物中,Sox17对于内胚层形成至关重要,可以诱导内胚层祖细胞身份。表型证据表明斑马鱼Sox32和Sox17与哺乳动物Sox17之间的功能相似性。我们试图探索斑马鱼早期胚胎中这些蛋白质之间的功能差异和潜在的相似性。我们的结果表明,与Sox32不同,人类Sox17不能在斑马鱼中诱导内胚层规范。此外,使用混合蛋白功能分析,我们表明SOX32内胚层基因调节网络的特异性与其HMG域与旁产皮sox17的进化差异有关。此外,Sox32和Sox17的C末端区域的变化是其在介导差异基因调节程序中的不同目标特异性和差异的基础。最后,我们确定C末端结构域中的特定保守肽对于SOX17在建立正确的器官不对称性中的作用至关重要。总体而言,我们的结果为脊椎动物内胚层发育,左右模式以及SOXF转录因子功能的演变提供了新的见解。