摘要。阿尔茨海默氏病(AD)缺乏有效的治疗方法,通常在发生实质性病理变化后发现干预措施具有挑战性。早期发现和对危险因素及其下游影响的理解至关重要。动物模型提供了研究这些前驱阶段的宝贵工具。我们使用表达三个主要人类APOE等位基因的小鼠来投资各种遗传风险,代替了小鼠APOE。我们利用这些小鼠模型利用高分辨率磁共振扩散成像,因为它提供了可以共同分析的多个参数的能力。我们研究了APOE基因型如何与年龄,性别,饮食和免疫力相关,以产生区域脑体积和分数各向异性的共同变化,这是对脑水扩散的敏感度量。我们的结果表明,基因型强烈影响尾状壳,PON,扣带回皮层和小脑,而性别影响双侧杏仁核和梨状皮层。免疫状态会影响许多区域,包括顶叶皮层,丘脑,听觉皮层,V1和双侧齿状小脑核。危险因素相互作用特别影响杏仁核,丘脑和PON。apoE2小鼠在常规饮食上表现出最少的时间变化,表明弹性,而ApoE3小鼠对高脂饮食(HFD)的影响最小。HFD扩增了多个大脑区域的衰老效应。包括饮食在内的AD危险因素的相互作用显示出灰灰色,PON,PONS,AMYGDALA,下丘,M1和腹侧轨道皮层的显着变化。未来的研究应研究这些协调的体积和纹理变化基础的机械性,可能通过检查基因表达和代谢中的网络相似性,以及它们与与神经退行性疾病进展有关的结构途径的关系。
1 1诊断和介入放射学和核医学系,汉堡 - 埃芬多夫,汉堡,德国汉堡2神经退行性疾病中心(DZNE)慕尼黑,德国慕尼黑7慕尼黑系统神经病学集群(Synergy),慕尼黑,德国慕尼黑8号8号神经病学系,汉堡大学医学中心,汉堡,汉堡,德国9号,汉堡,9月9日,德国核医学,奥格斯堡,穆尼尔,穆尼奇,穆尼奇,穆尼奇,穆尼,穆尼,德国汉诺威汉诺威医学院的诊断和介入神经放射学,12号医学和辐射保护保护,大学医院,奥格斯堡大学,德国奥格斯堡,奥格斯堡,德国奥格斯堡13 13莱比锡神经病学系,莱比锡,莱比锡,德国莱比锡,德国14号神经病学系,奥格斯堡,神经病学系。德国慕尼黑16美国纽约州曼海斯特医学研究机构Manhasset,美国17核医学系,莱比锡大学医院,莱比锡,德国1诊断和介入放射学和核医学系,汉堡 - 埃芬多夫,汉堡,德国汉堡2神经退行性疾病中心(DZNE)慕尼黑,德国慕尼黑7慕尼黑系统神经病学集群(Synergy),慕尼黑,德国慕尼黑8号8号神经病学系,汉堡大学医学中心,汉堡,汉堡,德国9号,汉堡,9月9日,德国核医学,奥格斯堡,穆尼尔,穆尼奇,穆尼奇,穆尼奇,穆尼,穆尼,德国汉诺威汉诺威医学院的诊断和介入神经放射学,12号医学和辐射保护保护,大学医院,奥格斯堡大学,德国奥格斯堡,奥格斯堡,德国奥格斯堡13 13莱比锡神经病学系,莱比锡,莱比锡,德国莱比锡,德国14号神经病学系,奥格斯堡,神经病学系。德国慕尼黑16美国纽约州曼海斯特医学研究机构Manhasset,美国17核医学系,莱比锡大学医院,莱比锡,德国
丹麦磁共振研究中心,功能和诊断成像与研究中心,哥本哈根大学医院 - 仪表板 - 室友和HVIDOVRE,丹麦B伦敦B伦敦伦敦数学数学学院,英国伦敦,C哥本哈根大学,哥本哈根大学,哥本哈根大学,哥本哈根大学,丹麦哥本哈根,丹麦医院,医院,哥伦比亚大学。哥本哈根,丹麦E临床医学研究所,哥本哈根大学医学和健康科学学院丹麦H丹麦H哥本哈根,沃恩福德医院,牛津大学,牛津大学,牛津大学,英国I辐射科学系,UMEå功能性脑成像中心(UFBI),Umeå大学,Umeå大学,瑞典
2 理论分析 3 2.1 光学像差....................................................................................................................................................................3 2.1.1 球面像差....................................................................................................................................................................3 2.1.2 像散....................................................................................................................................................................................3 2.1.2 彗形像差....................................................................................................................................................................4 2.1.3 彗形像差....................................................................................................................................................................4 2.1.3 彗形像差.................................................................................................................................................................... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................21 2.2 与 OPIC 的相关性 .................................................................................................................................................................................22 2.2.1 镜头和传感器像差 .................................................................................................................................................................................22 2.2.2 轨迹动力学效应 .................................................................................................................................................................................24
