2300Na 钠分析仪为微电子纯水/超纯水和动力循环化学监测提供高度可靠的在线钠测量。该分析仪可保证水的纯度,并提前警告可能发生的离子突破 - 最大限度地减少发电厂涡轮机腐蚀的影响以及半导体工艺的中断。
简介 1912 年,人们偶然发现了苯巴比妥的抗惊厥特性,这为现代癫痫药物治疗奠定了基础。随后的 70 年里,苯妥英、乙琥胺、卡马西平、丙戊酸钠和一系列苯二氮卓类药物相继问世。这些药物被统称为“公认的”抗癫痫药物 (AED)。20 世纪 80 年代和 90 年代,癫痫药物的协同开发已导致(迄今为止)16 种新药物被批准作为难控成人和/或儿童癫痫的辅助治疗,其中一些药物可作为新诊断患者的单一疗法。这些药物被统称为“现代”AED。在这一前所未有的药物开发时期,我们对抗癫痫药物如何在细胞水平上发挥作用的理解也取得了长足的进步。抗癫痫药物既不能预防也不能治疗,仅用于控制症状(即抑制癫痫发作)。反复发作的癫痫是神经系统间歇性和过度兴奋的表现,虽然目前市场上销售的抗癫痫药物的药理学细节仍未完全阐明,但这些药物基本上可以纠正神经元兴奋和抑制之间的平衡。人们认识到三种主要机制:调节电压门控离子通道;增强γ-氨基丁酸 (GABA) 介导的抑制性神经传递;减弱谷氨酸介导的兴奋性神经传递。表 1 重点介绍了目前可用的抗癫痫药物的主要药理学靶点,并在下文进一步讨论。当前抗癫痫药物靶点电压门控钠通道电压门控钠通道负责神经细胞膜的去极化和动作电位在神经元细胞表面的传导。它们在整个神经元膜、树突、胞体、轴突和神经末梢上表达。在产生动作电位的轴突起始段 (AIS) 中表达密度最高。钠通道属于电压门控通道超家族,由多个蛋白质亚基组成,在膜上形成离子选择性孔。天然钠通道由单个 α 亚基蛋白组成,该蛋白包含成孔区和电压传感器,与一个或多个辅助 β 亚基蛋白相关,这些辅助 β 亚基蛋白可以改变 α 亚基的功能,但对基本通道活动并非必不可少。哺乳动物脑中表达四种主要的钠通道 α 亚基基因,分别表示为 SCN1A、SCN2A、SCN3A 和 SCN8A,它们分别编码通道 Na v 1.1、Na v 1.2、Na v 1.3 和 Na v 1.6。这些通道在神经系统中的表达存在差异。Na v 1。3 的表达主要局限于发育早期阶段,而 Na v 1.1 是抑制性中间神经元的主要钠通道,Na v 1.2 和 Na v 1.6 在主要兴奋性神经元的 AIS 中表达。Na v 1.2 似乎
CYP3A4的强抑制剂(例如 Clarithromycin,Ketoconazole,Itraconazole,Voriconazole,伏霉素,Indinavir,Nelfinavir,Ritonavir,Saquinavir,Saquinavir)cyp3a4的强或中度诱导者(例如 卡马西平,苯妥英钠,利福平,苯巴比妥,波森坦,埃法维伦兹,圣约翰麦芽汁)应在48小时内避免另一种rimegepant(例如) 如果与p-糖蛋白的CYP3A4中等抑制剂或强抑制剂相同给药,则不能服用额外的剂量。 如果相互作用的药物的处方是短期,例如 克拉霉素(Clarithromycin),如果不能选择一种替代性非交互药物,则可以在治疗过程中扣留RimeGepant。 副作用恶心,超敏反应。CYP3A4的强抑制剂(例如Clarithromycin,Ketoconazole,Itraconazole,Voriconazole,伏霉素,Indinavir,Nelfinavir,Ritonavir,Saquinavir,Saquinavir)cyp3a4的强或中度诱导者(例如 卡马西平,苯妥英钠,利福平,苯巴比妥,波森坦,埃法维伦兹,圣约翰麦芽汁)应在48小时内避免另一种rimegepant(例如) 如果与p-糖蛋白的CYP3A4中等抑制剂或强抑制剂相同给药,则不能服用额外的剂量。 如果相互作用的药物的处方是短期,例如 克拉霉素(Clarithromycin),如果不能选择一种替代性非交互药物,则可以在治疗过程中扣留RimeGepant。 副作用恶心,超敏反应。Clarithromycin,Ketoconazole,Itraconazole,Voriconazole,伏霉素,Indinavir,Nelfinavir,Ritonavir,Saquinavir,Saquinavir)cyp3a4的强或中度诱导者(例如卡马西平,苯妥英钠,利福平,苯巴比妥,波森坦,埃法维伦兹,圣约翰麦芽汁)应在48小时内避免另一种rimegepant(例如如果与p-糖蛋白的CYP3A4中等抑制剂或强抑制剂相同给药,则不能服用额外的剂量。如果相互作用的药物的处方是短期,例如克拉霉素(Clarithromycin),如果不能选择一种替代性非交互药物,则可以在治疗过程中扣留RimeGepant。副作用恶心,超敏反应。
2024 卫生部。允许部分或全部复制本作品,但必须注明来源,且不得用于销售或任何商业目的。 Conitec 负责本作品中的文本和图像的版权。编制、分发和信息 卫生部 科学、技术和创新及卫生经济工业综合体秘书处 - SECTICS 卫生技术管理和整合部 - DGITS 卫生技术评估总体协调 - CGATS Esplanada dos Ministérios,Bloco G,Edifício Sede,8 楼 CEP:70.058-900 - Brasília/DF 电话:(61) 3315-2848 网站:https://www.gov.br/conitec/pt-br 电子邮件:conitec@saude.gov.br 报告编制 巴拉那联邦大学卫生技术评估中心 - NATS-UFPR Astrid Wiens Souza Lina Tieco Doi Mariana Millan Fachi 技术前景监测 监测协调健康技术 - CMTS/DGITS/SECTICS/MS 患者视角 技术整合协调 - CITEC/DGITS/SECTICS/MS Adriana Prates Aérica de Figueiredo Pereira Meneses Andrea Brígida de Souza Luiza Nogueira Losco Melina Sampaio de Ramos Barros 评审 Daniel da Silva Pereira Curado - CGATS/DGITS/SECTICS/MS Fernanda D'athayde Rodrigues - CGATS/DGITS/SECTICS/MS Luciana Costa Xavier - CGATS/DGITS/SECTICS/MS 协调 Priscila Gebrim Louly - CGATS/DGITS/SECTICS/MS Luciana Costa Xavier - CGATS/DGITS/SECTICS/MS 监督 Luciene Fontes Schluckebier Bonan - DGITS/SECTICS/MS
锂离子电池是当今电力平台的重要组成部分。锂离子电池在所有便携式电子设备、电动和混合动力汽车以及电网规模的储能系统中都有广泛的应用。[4] 但由于电池行业需要近 50% 的可用锂资源,因此锂离子电池能否大规模生产用于电网应用尚不确定。[5f] 此外,锂离子在非质子电解质中的电导率有限以及安全性较差也可能对其大规模利用造成问题。这些缺点促使研究人员寻找替代锂离子电池的新型储能技术,其中可充电金属空气电池成为一种有前途的新型电能存储技术(图 1)。通常,金属空气电池(Li 或 Na)比锂离子电池具有更高的理论比能,这使得金属空气电池系统对混合动力和混合动力电动汽车具有吸引力和实用性。 [6] 以金属为阳极、氧为阴极活性材料的电化学电力装置具有最高的能量密度,因为后者不存储在装置内部,而是可从环境中获取。锂空气电池(LAB)的理论比能量与汽油的理论比能量相当。[5c,7] 空气阴极性能限制了电池容量,危及 LAB 技术的商业成功。首先,无论是碱性还是酸性水性电解质,在阴极反应过程中都会消耗溶剂。其次,由于孔口/开口的堵塞导致放电不完全。[8] 因此,提高 LAB 性能的可能途径之一是阴极材料结构,[9] 它可以保持活性锂离子和氧气的传输,并且可以填充大量氧还原反应(ORR)的产物而不会堵塞孔隙。在燃料电池的气体扩散电极 (GDE) 领域中,双孔材料有望提高能量容量。[10] 第三,空气阴极性能下降。空气阴极提供大部分电池能量,因此电池电压降最大。[11] 放电过程中 LiO 2 的积累产生了混合产物,充电时的高电压导致溶剂分解,同时过氧化锂也发生还原。[12] 氧溶解度和扩散速率成为影响电池能量容量的关键因素。使用氧溶解度高和氧扩散率高的电解质可提高阴极容量。[8,13]
成本 $/kWh 石墨 12.50 10.23 Li-Si 合金 2.10 0.19 Na-Sn 合金 16.10 11.50 电解质 12.50 10.13 SSE-Sep *50.00 12.06 SSE-Sep 0.28 0.09 隔膜 160.00 24.00 SSE-Cat *50.00 14.71 SSE-Cat 1.73 0.49 铝 7.41 2.09 铝 7.41 0.98 铝 7.41 2.38 铜 13.45 12.55 铜 13.45 5.90 铜 不需要 阴极 20.00 30.03 阴极 17.00 25.01 阴极 1.51 4.89 制造占总成本的 35% 制造占总成本的 25% 制造占总成本的 50% 总计 $135/kWh 总计 <$80/kWh 总计 <$40/kWh(目标)
钠 (Na) 电池之所以被选为大规模储能候选材料,很大程度上源于这样一个事实:作为地壳中第六大丰富元素和海洋中第四大丰富元素,钠是一种廉价且全球均可获取的商品。钠电池的重大研究和开发可以追溯到 50 多年前。熔融钠电池始于 20 世纪 60 年代末的钠硫 (NaS) 电池,当时它被用作汽车电气化的潜在高温电源 [1]。继 NaS 电池之后,20 世纪 70 年代出现了钠金属卤化物电池(NaMH:例如钠镍氯化物),也称为 ZEBRA 电池(沸石电池研究非洲项目,或最近的零排放电池研究活动),也是考虑到交通运输应用 [2]。钠离子电池 (NaIB) 最初是在 20 世纪 80 年代与锂离子电池 (LIB) 大致同时开发的;然而,由于充电/放电速率、循环性、能量密度和稳定电压曲线的限制,它们在历史上的竞争力不如锂电池 [3]。最近,固态钠电池 (SSSB) 已开始成为候选商业产品,尽管它们在大规模、长时间存储中的适用性目前尚未得到很好的证实 [4]。
动脉粥样硬化心血管疾病(CVD),慢性肾脏疾病(CKD),神经病和视网膜病[1]。HF和CKD已被证明是2型糖尿病(T2D)患者最常见的心脏节日,最初无心脏疾病,因为这些事件也与进一步的CVD和死亡率的风险增加有关[2]。这种高疗程的风险是慢性高血糖的结果,并因其他合并症(例如高血压,dyslipi-demia和肥胖症)而加剧。因此,需要有效且耐受良好的治疗方法,可以帮助患有T2D的患者实现并维持血糖控制,并预防心脏疾病的发作和进展。在降低葡萄糖的不同类别中,钠 - 葡萄糖共转运蛋白2型抑制剂(SGLT2I)表现出了解决这一需求的潜力。评估Sglt2i empagli ozin,canagli ozin,dapagli-flozin和Ertugli flozin的几项临床试验显示,HF的主要不良心血管事件和/或较低的风险降低了卵形疾病进度的主要不良心血管事件和/或较低的风险降低。在这篇综述中,我们旨在总结并讨论近年来关于SGLT2I治疗类别及其在心脏预防中的作用的证据。本文基于先前进行的研究,不包含对任何作者进行的人类参与者或动物的任何研究。