1 以AI(人工智能)为例,欧盟高级别专家组报告将其定义为“根据环境和输入,表现出智能行为(可能具有一定自主性)的系统”,但“智能行为”的实质,在某种程度上依赖于解释。 此外,2016年美国发布的AI100报告中,曾引用尼尔斯·尼尔森对人工智能这一学科领域的定义:“人工智能是一门创造智能机器的研究,其中智能是指在其所处的环境中适当地发挥功能并具有一定的洞察力的能力。”但这一定义也存在很大程度的模糊性。事实上,报告指出,人工智能的模糊定义本身也有积极的一面,即加速人工智能的研究。基于此,尽管对于什么是“人工智能”或“人工智能技术”目前已达成一定共识,但过于严格地按照所采用的技术进行定义意义不大。同时需要注意的是,此类系统嵌入在高度复杂的系统中。此外,如果没有收集、存储和访问大量数据的基础设施、超高速通信网络、传感器组、机器人等,人工智能系统的实施将充满不确定性。如果不能开发并实施网络安全和人工智能伦理等确保此类系统安全性和稳健性的技术,人工智能将很难被广泛接受。人工智能涵盖了实现智能功能的广泛系统,预计将部署到未来社会、产业、日常生活以及科学研究和技术开发等所有领域。因此,这一战略的目标也必须在这些领域进行综合构思。
[1] Scheltens P,De Strooper B,Kivipelto M等。阿尔茨海默氏病。Lancet,2021,397:1577-90 [2] Talarico G,Trebbastoni A,Bruno G等。大麻素系统的调节:治疗阿尔茨海默氏病的新观点。Curr Neuropharmacol,2019,17:176-83 [3] Huang LK,Chao SP,Hu CJ。阿尔茨海默氏病新药的临床试验。J Biomed Sci,2020,27:18 [4] Zhou S,Chen S,Liu X等。体育活动改善了成年人患有阿尔茨海默氏病的成人日常生活的认知和活动:对随机对照试验的系统评价和元分析。Int J Environ Res Public Health,2022,19:1216 [5] Estrada JA,ContrerasI。中枢神经系统中的内源性大麻素受体:预防和治疗神经系统和精神疾病的潜在药物靶标。Curr Neuropharmacol,2020,18:769-87 [6] Tantimonaco M,Ceci R,Sabatini S等。体育锻炼和内源性大麻素系统:概述。细胞摩尔生命科学,2014,71:2681-98 [7] Charytoniuk T,Zywno H,Berk K等。内源性大麻素系统和体育活动 - 在针对代谢性疾病的新型治疗方法中强大的二人组合。Int J Mol Sci,2022,23:3083 [8] Forteza F,Giorgini G,Raymond F.有氧运动通过内源性大麻素诱导的神经生物学过程。细胞,2021,10:938 [9]王海军,牛亚凯,陈巍。内源性大麻素系统在运动促进脑健康中的研究进展。生命科学,2021,33:1096-103 [10] Matei D,Trofin D,Iordan DA等。内源性大麻素系统和体育锻炼。Neuron,2001,29:729-38 [15] Wilson RI,Nicoll RA。Int J Mol Sci,2023,24:1989 [11] Cristino L,Bisogno T,Di Marzo V.神经系统疾病中的大麻素和扩展的内源性大麻素系统。nat Rev Neurol,2020,16:9-29 [12] Chevaleyre V,Takahashi KA,Castillo PE。内源性大麻素 - 中枢神经系统中介导的突触可塑性。Annu Rev Neurosci,2006,29:37-76 [13] Llano I,Leresche N,MartyA。钙进入会增加小脑Purkinje细胞对应用GABA的敏感性并降低抑制性突触。Neuron,1991,6:565-74 [14] Ohno-Shosaku T,Maejima T,Kano M.内源性大麻素介导从去极化的突触后神经元到突触前末端的逆行信号。内源性大麻素在海马突触下介导逆行信号。自然,2001,410:588-92 [16] Ohno-Shosaku T,Tsubokawa H,Mizushima I等。突触前大麻素敏感性是海马突触中去极化诱导的逆行抑制的主要决定因素。J Neurosci,2002,22:3864-72 [17] Cassano T,Calcagnini S,Pace L等。大麻素
遗传犬SMA的管理主要是支持的,因为目前尚无治愈状况。物理疗法,包括实力锻炼和流动性辅助疗法,可以帮助管理症状并改善受影响狗的生活质量。营养支持和体重管理在减慢疾病进展方面也很重要,因为肌肉浪费会加剧弱点。研究人员正在描述潜在的治疗选择,包括基因治疗和干细胞治疗,以恢复运动神经元功能并减缓疾病的进展。基因编辑技术(例如CRISPR-CAS9)的最新进步可能会对狗和人类的遗传性SMA进行未来的治疗有望。
帕金森氏病(PD)具有运动障碍,包括震颤,胸肌,肌肉僵硬和失衡。PD还与许多非运动症状有关,例如认知障碍,痴呆和精神障碍。先前的研究确定了PD进展与诸如α-突触核蛋白聚集,线粒体功能障碍,炎症和细胞死亡之间的关联。大麻素类型2受体(CB 2受体)是一种跨膜G蛋白偶联受体,已作为内源性大麻素系统的一部分进行了广泛的研究。CB 2受体最近成为神经退行性疾病抗炎治疗的有希望的靶标。据报道,它可以调节有助于神经元细胞死亡的线粒体功能,氧化应激,铁转运和神经炎症。此外,CB 2受体还具有提供电生理过程的反馈,为PD处理提供了新的可能性。本综述总结了PD发病机理的基础机制。我们还讨论了CB 2受体在PD中扮演的潜在调节作用。
阿尔茨海默氏病(AD)是痴呆症的主要原因,由于人口老龄化而构成了日益严重的全球健康挑战。早期和准确的诊断对于优化治疗和管理至关重要,但是传统的诊断方法通常在解决AD病理学的复杂性方面通常不足。放射组学和人工智能(AI)的最新进步通过整合定量成像功能和机器学习算法来增强诊断和预后精度,从而提供了新的解决方案。本综述探讨了放射线学和AI在AD中的应用,重点介绍了PET和MRI等关键成像方式,以及结合结构和功能数据的多模式方法。我们讨论了这些技术鉴定疾病特异性生物标志物,预测疾病进展并指导个性化干预措施的潜力。此外,该评论还解决了关键挑战,包括数据标准化,模型解释性以及将AI集成到临床工作流程中。通过强调当前的成就并确定未来的方向,本文强调了AI驱动的放射线学在重塑AD诊断和护理方面的变革潜力。