微电子技术的进步使得更高的集成密度成为可能,并且目前正在进行机载系统的大规模开发,这种增长遇到了功耗的限制因素。更高的功耗将导致产生的热量立即扩散,从而导致热问题。因此,随着系统温度的升高,系统的总消耗能量将增加。微处理器的高温和计算机系统的大量热能对系统信心、性能和冷却费用产生巨大的问题。处理器消耗的功率主要来自内核数量和时钟频率的增加,这些功率以热量的形式消散,给芯片设计人员带来了热挑战。随着纳米技术中微处理器性能的显着提高,功耗变得不可忽略。为了解决这个问题,本文使用多目标帕累托前沿 (PF) 和粒子群优化 (PSO) 算法来解决高性能处理器的功耗降低问题,以实现功耗作为优先计算,从而减少目标微处理器单元的实际延迟。仿真验证了概念基础以及关节体和电源电压(V th- V DD )的优化,并显示出令人满意的结果。
摘要。深部脑刺激 (DBS) 的术前路径规划是一个多目标优化问题,即在多个放置约束之间寻找最佳折衷点。它的自动化通常通过使用聚合方法将问题转变为单目标来解决。然而,尽管这种方法很直观,但它以无法找到所有最优解而闻名。在本文中,我们引入了一种基于多目标优势的 DBS 路径规划方法。我们将它与经典的多个约束的聚合加权和以及由神经外科医生对 14 个 DBS 病例进行的回顾性研究的手动规划进行了比较。结果表明,基于优势的方法优于手动规划,并且与传统的加权和方法相比,它涵盖了更多相关的最佳切入点选择,因为传统的加权和方法会丢弃外科医生可能喜欢的有趣解决方案。
深层生成模型最近显示了解决复杂工程设计问题的成功,其中模型预测了解决指定为输入的设计要求的解决方案。ever,在对这些模型进行有效设计探索的对齐方面仍然存在挑战。对于许多设计问题,找到满足所有要求的解决方案是不可行的。在这种情况下,启动者更喜欢在这些要求方面获得一组最佳的帕累托最佳选择,但是生成模型的单程抽样可能不会产生有用的帕累托前沿。为了解决这一差距,我们将使用模拟微调生成模型来实现帕累托 - 前设计探索的新框架。首先,该框架采用了针对大型语言模型(LLM)开发的偏好一致性方法,并展示了用于微调工程设计生成模型时的第一个应用。这里的重要区别在于,我们使用模拟器代替人类来提供准确,可扩展的反馈。接下来,我们提出了Epsilon-Smplamping,灵感来自具有经典优化算法的帕托前期生成的Epsilon-约束方法,以使用精细的模型来构建高质量的Pareto前沿。我们的框架(称为e-Simft)被证明比现有的多目标比对方法产生更好的帕累托前沿。
符号回归之所以很难,是因为符号表达式的组合空间呈指数级增长。传统上,它依赖于人类的直觉,从而发现了一些最著名的科学公式。最近,在完全自动化该过程方面取得了巨大进展 [6-26],现在已有开源软件可以通过将神经网络与受物理学和信息论启发的技术相结合来发现相当复杂的物理方程 [25]。尽管 [25] 使用未知函数的神经网络近似来发现简化函数属性,取得了最先进的性能,但它是以一种非原则性和临时性的方式实现的,我们用一种通用的、有原则的、更有效的方法取而代之,该方法包含四个主要贡献:
a。奈良科学技术学院科学技术研究生院,8916-5高山 - 哥,马萨诸塞州伊科马,奈良630-0192,日本。b。数据科学中心,奈良科学技术学院,8916-5高山 - 俄罗斯州,伊科马,奈良630-0192,日本。c。材料信息学计划,RD技术与数字化转型中心,JSR Corporation,3-103-9 TOMAN-ACHI,KAWASAKI-KU,KAWASAKI,KANAGAWA,KANAGAWA 210-0821,日本。d。精细的化学工艺部,JSR Corporation,100 Kawajiri-Cho,Yokkaichi,MIE 510-8552,日本。e。 Keio大学科学技术学院化学系,日本Kohoku-Ku 3-14-1 Hiyoshi,Kohoku-Ku,Kanagawa,Kanagawa 223-8522,日本。f。奈良科学技术学院材料研究平台中心,8916-5高山 - 俄罗斯州,伊科马,纳拉,日本,伊科马630-0192。关键词聚合物,流量合成,自由基聚合,贝叶斯优化,多物镜贝叶斯优化,苯乙烯,苯乙烯,甲基丙烯酸甲酯
流程和方法 这些策略由多阶段流程制定,并有利益相关者积极参与,首先是实地考察和参观城市商业区和目的地资产,然后与居民、企业和业主以及酒店经营者进行焦点小组讨论,最后与合作伙伴(包括商会、城市村庄农贸市场和一些跨部门城市工作人员)进行讨论。在初始阶段,顾问进行了背景研究和趋势评估。随后进行的诊断包括 1)区域/本地竞争和供需的零售市场评估,2)商业环境评估,包括税收分析和酒店/旅游业评估,3)行政评估,分析现有政策和分区要求以及组织能力,以及 4)对所有研究区域商业区的物理评估。
I。由于能量短缺和保护环境的增加压力,风能引起了人们的注意。风被认为是清洁能源,可以减轻对化石燃料的依赖。但是,风速的随机特征导致风能输出的波动性和不确定性。因此,风能的高渗透可能会对系统稳定性产生负面影响,并导致侵犯能量平衡约束[1]。实际上,一旦风力渗透成为总能源产量的5%以上,功率质量将受风力发电的不确定性的影响[2]。因此,在风热系统中,重要的是要完美地分配包括风能在内的所有单元的产生,以减轻风力降低。此问题称为功率调度问题。几项研究工作已处理了风热系统的最佳调度。此类问题的解决方案是基于二次编程,遗传算法(GA)[3],粒子群优化(PSO)[4],模拟退火[5],Harmony Search [6],Firefly AlgorithM [7],化学反应[8]等,等等。风的不确定性
新想法通常是现有商品或思想的组合,Romer(1993)和Weitzman(1998)强调了这一点。单独的文献强调了指数增长与帕累托分布之间的联系:Gabaix(1999)展示了指数增长如何产生帕累托分布,而Kortum(1997)则显示了帕累托分布如何产生指数级增长。但这提出了一个“鸡肉和鸡蛋”问题:哪个是第一个是指数级的增长或帕累托分布?,无论如何,Romer和Weitzman的见解发生了什么,Combinatorics应该很重要?本文通过证明从标准薄尾分配的抽取数量的组合增长会导致指数级经济增长来回答这些问题;无需帕累托假设。更一般地,它提供了一个定理,将最大极端值的行为与抽奖数和尾巴的形状联系起来,以进行任何连续的概率分布。