Biolayer干涉法(BLI)是一种用于确定大分子之间相互作用动力学的广泛使用的技术。大多数BLI仪器,例如在此协议中使用的八位骨料RED96E,都是完全自动化的,并检测出反射生物传感器尖端的白光干扰模式的变化。生物传感器最初用固定的大分子加载,然后引入含有感兴趣的大分子的溶液中。与固定分子的结合会产生光波长的变化,该光波长是由仪器实时记录的。大多数已发表的BLI实验评估蛋白质蛋白质(例如抗体 - 基质动力学)或蛋白质 - 小分子(例如药物发现)相互作用。然而,BLI分析的较不值得认可的分析是DNA-蛋白质相互作用。在我们的实验室中,我们显示了使用生物素化DNA探针确定转录因子与特定DNA序列的结合动力学的实用性。以下协议描述了这些步骤,包括生成生物素化DNA探针的生成,BLI实验的执行以及通过GraphPad Prism的数据分析。
扫描光电流显微镜传统上是使用聚焦光束进行的。1 - 4在这项技术的现代变体中,事件光的聚焦是通过尖锐的金属尖端实现的,如图1。这样的尖端充当光天线,将局部增强的近场增强到自由空间辐射。在实验中,扫描尖端,并使用位于样品外围的某个位置的电动触点来测量样品中产生的直流光电流。下面,我们将此技术称为扫描近场光电流显微镜或光电流纳米镜检查。也可以利用参与此类测量的仪器进行散射型扫描近场光学显微镜(S-SNOM)。在s-snom中,一个人检测到尖端而不是光电流的光片。实际上,一起执行S-SNOM和光电流纳米镜检查,提供了有关系统的互补信息。这种技术的组合已成功地应用于探针石墨烯和其他二维(2D)材料5 - 9的空间分辨率为≏20nm,这比衍射受限的传统方法好。最近的光电流纳米镜检查实验显示出区别的光谱共振和周期性干扰模式
近几十年来,科学家掌握了由单个原子或分子层组成的二维晶体的创建。当这些晶体被轻微的偏移或旋转堆叠时,它们会产生大规模的干扰模式,称为Moiré模式。在这样的莫伊尔材料中,电子状态与莫伊尔图案的周期性一致,而不是原始晶体的周期性,对材料的电子特性产生了深远的影响。扭曲的双层石墨烯(TBG),其中两层石墨烯略有扭曲,是这种现象的主要例子。石墨烯是一种二维晶体,该晶体由排列在蜂蜜梳子晶格中的单层碳原子形成。当以特定的扭曲角度堆叠(称为魔法角度)时,TBG具有显着的特性,包括非常规超导性和低能量处的电子带结构的区别。Tarnopolsky,Kruchkov和Vishwanath [TKV19]引入了TBG的手性连续体模型,该模型通过精确地展示了Bloch-Floquet乐队,从而捕捉了TBG魔法角度的这种基本性质。在[bewz21,bewz22]中显示,由于扭曲角度非常小,几乎每个接近零能量的频段基本上都是为此模型的。在本文中,我们研究了Timmel和Mele [TM20]引入的上述手性模型的类似物,其中Moiré-type结构通过应用物理菌株在一个维度中占据一维。虽然此模型确实
互补性是最初在量子结构域中引起的基本思想。在标准范围内被制定为对两个可观察物的多种确定的不可能。尽管互补性通常被理解为一种纯粹的量子现象,但事实并非如此,并且在经典领域中也存在互补性[1-4]。这是最初被认为是量子起源的现象的另一个例子,但也可以在经典的光学元件中找到,因为Zeno ectect的情况,例如[5-12]。在这项工作中,我们证明了量子和经典光学的互补性完全平行性。为了定义,我们专注于路径互补互补性的最开创性示例:年轻的干涉。互补性将体现在尝试为这两个互补变量的联合分布中得出的。我们的起点是,只要观察值足够精确,就可以同时在量子域中同时观察到两个互补观测。在我们的情况下,通过通过不同的极化状态在每个光圈处标记光线来允许关节观察。然后,在跟踪包含路径信息的极化状态时观察到干扰。但是,即使观察结果不精确,它也可以提供有关所讨论的两个变量的完整而精确的信息,然后可以通过合适的数据反转程序提取这些变量。这个想法是,这种尝试的联合分布将在某种病理中表现出来。此反转过程将应用于对光圈处的光量和干扰模式的不精确,同时观察,以解决这些可观察到的无噪声关节分布的存在。我们发现的主要结果是,这将以与量子op- op-
光学陀螺仪是一种使用光学原理来测量角速度和方向的设备。它由旋转转子和一对光电检测器组成,该检测器可以通过检测光路径中的变化来测量对象的旋转。光学陀螺仪广泛用于惯性导航,飞行控制,地震监测和其他田地[1]。光学陀螺仪使用SAGNAC效应,这是光学物理学中众所周知的现象。当一束光束分成两个梁并以相反的方向围绕循环绕着循环行驶时,如果环旋转,则两个光束在环上行驶所需的时间将有所不同[2]。这是因为环的旋转导致两个梁之间的相移,这导致干扰模式与环路的旋转速率成正比。近年来,光子综合电路(图片)的进步导致了新型设备的开发,例如片上激光器,光子集成电路和光电神经网络[3]。这些设备有可能对诸如计算,传感和通信等领域进行重复化。集成光学陀螺仪的关键优势之一是将多个功能组合到单个芯片上的能力,从而改善了性能和减小的尺寸,重量,重量和功耗,使其适用于更广泛的应用程序[4]。在这里,我们将集成的光学陀螺仪(IOG)分为两类,包括集成的干涉光学陀螺仪(IIOG)和集成的共振光学陀螺仪(IROGS)[5]。在IIOG中,干涉光纤陀螺仪
fuine量子现象与某种干扰模式相连,或者与不同的可观察物的不相容性有关。在量子相干的框架内尚未研究[2,17,27,43,63,63,67,76,78,78,86,93,102],简单地说,它是一种评估具有系统状态的抗抗强度的方法[17]。量子相干性也可以在资源理论的术语中进行描述[11、20、90、91]。由于资源理论服务于热力学基础[26],因此在Quan-Tum热力学的背景下,也已对量子相干性和实现的作用[8,10,53,54,85,105]进行了彻底研究[76]。在能够进行工作的量子设备中,量子电池具有特殊的位置。量子电池是基本的重要性,是一项激烈研究的领域[1、3-5、7、11、37、71、74、79、90、95],在Thermodody-Namics [6、12-14、31、33、41、61、68]中。我们通过Hamiltonian H 0对量子电池进行建模,该量子电池在时间上产生了能量的概念,并且随时间演化的量子状态ρt将ET(ρ)=ρt播放。在这里,图e t是一个不需要统一的通用量子通道,因为我们还考虑了开放量子系统的可能性[34,49,90]。提取的或存储的工作导致与初始状态不同的方式填充H 0的水平。先前的工作表明,量子相干性在从量子系统中提取工作中的重要性。同时,[75]显示了量子相干的行为如何构成fur-在[66]中,作者介绍了可以通过热过程提取的汉密尔顿特征性的相干性。
摘要:使用吸附的单链DNA(ssDNA)的单壁碳纳米管(SWCNT)作为传感器进行研究,以研究生物系统,其潜在应用从临床诊断到农业生物技术。唯一的ssDNA序列使SWCNT有选择地响应靶向分析物,例如识别神经调节剂多巴胺等(GT)N -SWCNT。尚不清楚SWCNT表面上的ssDNA构象如何有助于功能,因为观察结果仅限于脱水条件下的计算模型或实验,这与应用纳米传感器的水性生物环境有很大不同。我们通过X射线散射干涉测量法(XSI)来展示一种直接测量SSDNA几何形状的模式,该模式利用了AuNP标签产生的干扰模式,该模式由AuNP标记在SWCNT表面上与SSDNA结合在一起。我们使用XSI来量化两个(GT)N ssDNA低聚物长度(n = 6,15)的不同表面吸附的形态(n = 6,15),它们在多巴胺感应的背景下用于SWCNT,并测量SSDNA构象变化作为离子强度和多巴胺相互作用的功能。我们表明,与更长的(GT)15低聚物相比,较短的低聚物(GT)6沿SWCNT轴(SSDNA间距离为8.6±0.3 nm)采用更周期性的有序环结构(SSDNA间距离为8.6±0.3 nm)(最有可能的5'-5'-5'至14.3±1.1 nm)。在分子识别期间,XSI揭示了多巴胺在SWCNT表面同时引起吸附ssDNA的轴向伸长和径向收缩。■简介我们使用XSI探测聚合物功能化SWCNT的溶液 - 相形态的方法可以应用于感应机制的见解,并为基于纳米粒子的传感器提供了未来的设计策略。
声学辐射力(ARF)是由大振幅声波产生的稳定力,是实现微型对象操作的凸面手段,例如微样本分离[1-3]和富集[4],细胞排序,细胞排序[5,6]和单细胞操纵[7]。使用瞬态激发(例如脉冲)可以比使用时间周期性的声filds [1-7]更精确地操纵。首先,脉冲声学的消化不受雷利声流的干扰[8,9],因为辐射力的确定速度要比流媒体快得多[10,11]。第二,使用声波数据包可以定位声学干扰模式,因此可以控制声学陷阱区域的空间范围[12]。的确,站立波施加的辐射力比行进波(在小粒子极限)大得多,这允许在干扰区域外接种声学。激光引导的声学镊子(LGAT)[13]使用此征服原理创建杂交辐射力景观,以造成高振幅产生的高幅度压电的声性(强,z- Z-结构)的声学和弱化的eLd eeld eeld和lotter-lotter-lotter-lotter-lotter-lotter-lotter-lotter-lotter-lipter-liptifiented(l)。杂交场保留了l-场的空间信息和Z型的强度。尽管有这些潜在的应用,但瞬态声学领域的理论和数值研究仍然很少见。同样,也没有直接研究瞬态ARF的数值方案。除了确定对象是球形的,而且要小得多对瞬时非线性声学的电流理解有限的一个哭泣的例子是抑制声脉冲对声学流的抑制[8,9],其中唯一可用于瞬态流的模型[14]是无能为力地解释实验性观察[10,11]。在本文中,我们实施了小球的辐射力理论的最新概括(Gor'kov理论[15])对瞬时声学界[16]。
前五卷的序言和光学工程学指出:“当然,应用的光学和光学工程的许多方面都不会在这些卷中涵盖。”涵盖了其中一些“众多方面”的卷VI。此卷专门用于连贯的光学设备和系统。近年来,应用的光学和光学工程在传统领域继续显示出强度,但已扩展到包括1965年本系列第I卷第I卷的全新领域。连贯的光学科学和技术已作为应用光学和光学工程的重要分支发展。刺激是对激光作为通用光源的快速发展和开发。什么是连贯的光学工程?是那个特殊区域与相干光的独特特性的实际应用有关。相干光在空间上是高度相干,高度相干的(狭窄的光谱轮廓),高方向性和高能的。空间连贯性允许很容易产生经典的衍射现象,并用于多种测量和模式识别程序中,这是由于检测器技术和微型计算机的进步特别可行的。时间连贯性允许干涉仪在干扰梁之间的路径差异较大;因此,可以扩展常规干涉法。谁会在1965年猜到,因为光的空间和时间特性是使全息作用的特性。全息图是从物体衍射(或散射)以及已知或可重复的参考或背景梁产生的干扰模式中记录的强度分布。依次,全息图已使得非常有趣的新方法干涉方法。衍射与空间过滤器相结合,尤其是全息滤波器,构成了图像和信号处理方法的基础,这些方法已成为数字图像处理技术的有趣替代方法。今天尤其如此,因为光阀和空间光调节器的发展。激光束的方向性意味着它可以将其聚焦到一个非常小的高能点。这已经彻底改变了用于阅读,记录和显示目的的光学扫描系统。众所周知的声学和电形效应可有效地用于控制相干光束的方向和强度。
THE SCHIRN KUNSTHALLE PRESENTS THE MOST COMPREHENSIVE EXHIBITION OF CARSTEN NICOLAI TO DATE CARSTEN NICOLAI ANTI REFLEX 20 January – 28 March 2005 Press preview: Wednesday, 19 January 2005, 11.00 a.m. Carsten Nicolai is presently considered to be one of the most important representatives of a generation of artists who are purposefully exploring the points of intersection between art, nature, and science.作为一个人的跨境视觉艺术家,研究人员,音乐家和制作人,尼古拉(Nicolai)试图克服人类感知中的感官之间的分裂,并有可能通过听力和触摸和触摸体验诸如声音和光线或电磁场的频率,例如声音和光线或电磁场的频率。他的装置散发出极简主义的美学,以其优雅,简单和对技术的重视吸引了游客。在他参加了重要的国际展览之后,例如Kassel Docucta和Wenice双年展,Schirn提出了首次重大调查,1965年出生于Chemnitz的艺术家将制作一系列新作品。Max Hollein,展览的策展人:“在他的作品中,Carsten Nicolai将实验室实验的科学分析和方法与直观搜索他在艺术家作品中所依赖的新语言进行直观搜索。他利用了复杂的物理过程,并将其转移到可以体验和理解的视觉和声学信号中。”卡斯滕·尼古拉(Carsten Nicolai)对他对科学的态度:“我喜欢在非常精确的条件下工作,在这方面,科学研究和艺术过程或多或少是相同的。由类似实验产生的刚刚遵循普遍逻辑的人像机器一样行事。只有那些违反这些法律并做一些意想不到的新鲜地面的人。许多著名的科学发明偶然出现了。新发现通常是从意想不到的时刻出现的。”该展览是由Kulturstiftung derLänder和Merck Kgaa赞助的Schott AG和EAS GmbH授予了其他支持。声学和视觉的共存是Carsten Nicolai作品中的一个经常性主题。在现代声学科学的创始人恩斯特·克拉德尼(Ernst Chladni,1756– 1827年)的传统中,尼古拉旨在将不同的感官观念联系起来。在可重复的实验排列中,液体是通过不同频率的声音信号来动画的,例如,在同心圆,相遇和连接的情况下会产生波浪,从而产生振动结和干扰模式。尼古拉(Nicolai)部分大空间装置的视觉印象将声音体验转化为频率的肖像。