获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
量子启发模型在许多下游语言任务(如问答和情感分析)中表现出色。然而,最近的模型主要关注嵌入和测量操作,忽略了量子演化过程的重要性。在这项工作中,我们提出了一种新型的量子启发神经网络 LI-QiLM,它集成了林德布拉德主方程 (LME) 来建模演化过程和干涉测量过程,提供更多的物理意义以增强可解释性。我们对六个情感分析数据集进行了全面的实验。与传统神经网络、基于 Transformer 的预训练模型和量子启发模型(如 CICWE-QNN 和 ComplexQNN)相比,所提出的方法在六个常用的情感分析数据集上表现出卓越的准确率和 F1 分数。额外的消融测试验证了 LME 和干涉测量的有效性。