摘要 —随着 CMOS 技术的不断扩展,微电子电路越来越容易受到微电子变化的影响,例如工作条件的变化。这种变化会导致微电子电路的延迟不确定性,从而导致时序误差。电路设计人员通常在电路和架构设计中使用保守的保护带来解决这些错误,但这可能会导致操作效率的显著损失。在本文中,我们提出了 TEVoT,这是一种监督学习模型,可以预测不同工作条件、时钟速度和输入工作负载下功能单元 (FU) 的时序误差。我们执行动态时序分析来表征不同条件下 FU 的延迟变化,并在此基础上收集训练数据。然后,我们从训练数据中提取有用的特征并应用监督学习方法建立 TEVoT。在 100 种不同的工作条件、4 种广泛使用的 FU、3 种时钟速度和 3 个数据集中,TEVoT 的平均预测准确率为 98.25%,比门级仿真快 100 倍。我们进一步使用 TEVoT 通过将电路级时序误差暴露到应用程序级来估计不同操作条件下的应用程序输出质量。在 100 种操作条件下,TEVoT 对两个图像处理应用程序的平均估计准确率达到 97%。
我们调查了差异隐私中无偏见的高维平均估计器。我们考虑了差异的私有机制,其预期输出等于输入数据集的均值,对于从r d中的固定有限域K绘制的每个数据集。一种经典的私人平均估计方法是计算真实的均值,并添加无偏见但可能相关的高斯噪声。在本文的第一部分中,我们研究给定域K的高斯噪声机理可实现的最佳误差,当在某些p≥2中测量误差范围时。我们提供算法,以在适当的假设下计算给定k的高斯噪声的最佳协方差,并证明最佳误差的许多不错的几何特性。这些结果将来自域K的分解机制理论推广到对称和有限的(或等效地,对称的多面体)到任意界面的域。在本文的第二部分中,我们表明,高斯噪声机制在所有私人无偏见的平均估计机制中都在非常强烈的意义上达到了几乎最佳的误差。特别是,对于每个输入数据集,满足集中差异隐私的公正平均估计器至少与最佳高斯噪声机制一样多。我们将此结果扩展到局部差异隐私,并近似差异隐私,但是对于后者,对于数据集或相邻数据集,下限的误差较低的界限是必要的,则必须放松。
肺炎与流感一直位列加拿大成年人十大死因之一 [1]。当肺炎链球菌(肺炎的主要细菌病因)感染人体的无菌部位(如胸腔积液、血液、脑脊液)时,就会发生侵袭性肺炎球菌病 (IPD) [2,3]。在成人中,与 IPD 相关的发病率和死亡率随着年龄的增长而增加 [4]。加拿大的国家监测数据显示,2017 年 60 岁人群的年发病率为每 100,000 人 21.1 例,而根据各省数据,更高年龄组的估计发病率甚至更高(85 岁人群每 100,000 人有 57.5 例,而 2010 年至 2018 年安大略省所有年龄组的平均估计发病率为每 100,000 人 10.8 例)[5,6]。由于老年人更容易感染肺炎球菌疾病,国家免疫咨询委员会(NACI)于 1989 年首次建议所有 65 岁以上的人终生接种一剂肺炎球菌 23 价多糖疫苗(PPV23)[7]。根据该建议(截至最新的 NACI 指南(2018 年)[ 7 ],加拿大所有省份都从 2001 年或更早开始为其 65 岁人口提供 PPV23 疫苗接种资金 [ 8 ](S1 表)。除了这一基于年龄的建议之外,NACI 还建议患有至少一种慢性疾病 (CMC) 的 18-64 岁特定成年人群接种一剂终生 PPV23 疫苗,这一建议已被省级疫苗接种计划采纳 [ 8 , 9 ]。此外,根据目前的 NACI 指导,免疫功能低下的成年人,无论年龄大小,都建议在接种一剂 PPV23 疫苗前八周接种一剂肺炎球菌结合十三价疫苗 (PCV13),以最大限度地提高菌株覆盖率和免疫反应 [ 9 , 10 ]。尽管所有省份都已采用 NACI 关于肺炎球菌疫苗接种的指南,但各省的实施时间表、部署方式和资金方案各不相同(S1 表)。值得注意的是,各省提供疫苗接种的环境各不相同,这可能对疫苗的可及性产生影响。从历史上看,肺炎球菌疫苗主要在医生办公室接种,但在药房接种疫苗的情况越来越多。在一些省份,符合条件的个人可以在药房免费接种疫苗,而在其他省份,药房可能会收费提供此项服务(S1 表)。此外,虽然在任何一个省份都有一些高危人群有资格接种疫苗,但其中一些群体可能没有资格在药房接种疫苗。