使用3D计算机断层扫描(CT)图像测量了骨料的形态,直径为2英寸。和10英寸的高度(图2)。球形指数(i)是指颗粒的3D一般形状,无论角和边缘的角度特征如何。i被计算为粒子的实际体积的值除以粒子中刻有球体的体积。圆度指数(I r)定义为粒子实际表面积的比例除以球体的表面积,其大小使用其三个主轴等于粒子的平均大小。形式(f =最短的粒子轴/最长轴)是描述颗粒材料的另一个形状参数。形态指数的平均值为i s = 3.446,i r = 0.941和f = 0.434。有关更多详细信息,将读者转介
NP的形成及其化学成分。NP悬浮液,以在Malvern Zetasizer仪器(Malvern Panalytical Ltd,英国)中使用动态光散射(DLS)方法来确定颗粒的平均大小,分布和Zeta势,并在室温和90°的散射角度确定。使用扫描电子显微镜(Tescan Orsay Holding,Brno-Kohoutovice,Czech Republic)在15kV加速电压加速电压后评估了干燥NP的形态特征。通过读取RSV的吸光度来计算RSV捕集效率(EE)。CS NP悬架(总RSV)和无NP上清液(免费RSV)在Unico 2800 UV/可见分光光度计机器(UNICO,UNICO,DAYTON,NJ,NJ,NJ)中为310 nm。EE是根据以下等式计算的:
摘要:陶瓷墨水的稳定流变特性是喷墨印刷(IJP)的关键要求,应根据雷诺和韦伯的数字满足。在本文中,引入了反向微乳液,以合成单分散的纳米化陶瓷粉末,平均大小小于100 nm。比较两种不同的分散剂,即多丙烯酸铵(PAANH 4)和多丙烯酸辅助(PAA),表明前者对陶瓷墨水产生了良好的分散效应。沉积比,Zeta电位,表面张力,粘度和墨水密度,并计算了Reynolds和Weber数量以及Z值。在老化72小时后,可以实现稳定,均匀且高的固体负载(20 wt%)陶瓷墨水。最后,陶瓷油墨在喷墨打印过程中显示了所需的可打印属性。将喷墨打印技术与烧结过程相结合,Ni-Mn-OFIM有可能监视智能可穿戴设备的温度和湿度参数。
使用绿色方法合成的MGO NP的平均大小确定为24 nm。分子对接分析的结果表明,MGO纳米颗粒对极性氨基酸Ser 30,ASP 37和Lys 39的α-葡萄糖苷酶具有强大的亲和力。在100 µg/ml的浓度下观察到生物MGO纳米颗粒的最高水平,并且证明它们是最强大的抑制剂,将酶活性降低了60%。使用各种剂量的MGO纳米颗粒,包括25 µg/ml,50 µg/ml和100 µg/ml,用于抑制癌细胞系的生长。然而,最高的浓度表现出最显着的抑制作用。还评估了MGO NP的功效,以确定视网膜色素上皮细胞系(RPE)确定其对正常细胞的影响。发现MGO NP明确影响目标区域而不会损害健康细胞。
使用基于位置的网格平均图来计算电力的转换因子(基于位置);电力(基于市场)基于100%的雷戈(可再生能源保证)在总部(Maidenhead)的支持可再生能源关税,并且在Sitterbourne办公室的一部分不可更新来源。因此,基于市场的电力排放量为零,总部为零,在斯蒂伯恩办公室为9.5 CO2E吨。天然气消耗相关排放的转换因子是NCV数字,由Beis发布的文件提供。对于旅行,在可用的地方,燃油消耗数据已用于计算消耗的能量和相关的排放。在数据中列出了特定燃料的地方,已经使用了特定燃料的相关转换因子。如果没有燃料类型,则假定燃料是柴油。如果没有燃料消耗数据,则使用平均大小的汽车和“未知”燃料类型的里程数据计算了能源使用和相关的排放。计算消耗的能量时,已经使用了一种操作控制方法。
摘要:纳米颗粒是纳米材料,具有三个外部纳米级尺寸,平均大小范围为1至1000 nm。纳米颗粒由于其可调的物理,化学和生物学特征而在技术进步方面臭名昭著。然而,由于单核吞噬系统的快速检测以及血液和组织清除,功能化的纳米颗粒对生物的施用仍然具有挑战性。该系统的主要指数是巨噬细胞。无论纳米材料组成,巨噬细胞都可以通过吞噬作用检测并纳入异物。因此,最简单的解释是,任何注射的纳米颗粒都可能被巨噬细胞吸收。这部分解释了大多数纳米颗粒在脾,淋巴结和肝脏中的自然积累(单核吞噬系统的主要器官)。因此,最近的研究致力于设计纳米颗粒,以针对患病组织中的特定巨噬细胞靶向。本综述的目的是描述纳米颗粒设计巨噬细胞的当前策略,并调节其与不同疾病有关的免疫功能,并特别强调慢性炎症,组织再生和癌症。
摘要近年来,纳米技术因其对科学和生活的各个领域(包括生物学和生物医学)的广泛影响而引起了研究人员的大大关注。纳米级的纳米颗粒的独特物理,化学,光学,电子和磁性特性导致了有关其合成的巨大努力。通常通过各种物理和化学方法合成它们;但是,其中许多方法是能量密集型的,导致产生具有污染特性的有毒副产品。因此,环保方法的发现和开发,例如细菌对纳米颗粒的生物合成,引起了人们的注意。在这项研究中,使用微生物菌株的微生物菌株的微生物培养物合成了氧化锌纳米颗粒。OSNP13。通过包括UV-VIS,DLS和XRD在内的结构分析来表征合成的纳米颗粒。结果表明,产生的氧化锌纳米颗粒的平均大小为59.16 nm。此外,还评估了合成纳米颗粒的抗菌活性。将大肠杆菌和金黄色葡萄球菌的氧化锌纳米颗粒的MIC计算为500μg/ml。这项研究中产生的氧化铜纳米颗粒表现出显着的抗菌特性,可以被视为合适的候选物作为抗菌剂。
摘要 — 脑机接口是一个庞大的科学领域,有许多竞争性设计正在使用或测试中。该项目的目标是汇编有关犹他阵列、密歇根探针、神经织网(也称为网状电子)、Neuralink 和 Stentrode 的信息,并比较每种设计的优缺点。特别令人感兴趣的是材料参数、电极数量、异物反应严重程度、热量产生、电极深度、测量动作电位的平均大小和信噪比。比较结果如下:网状电子和 Stentrode 非常有前景,因为它们完全避免了传统的异物反应和细胞死亡问题,但后者以长期使用抗凝剂的风险来换取这些。犹他阵列在所有参数方面都比任何其他研究设计存在更多问题,包括当代的密歇根探针,尽管它们都使用相同的主要材料——硅。研究发现,严格比较这两种设计的实验研究严重缺乏,一旦这些设计再次可用于进一步的医学研究,这种缺乏可能会变得更加明显。
抽象的视觉同时定位和映射(VSLAM)为室内和室外导航发现了应用程序,这些应用程序通常会使其经常受到视觉复杂性的影响,尤其是镜像的反射。镜像存在的影响(时间可见及其在框架中的平均大小)的影响会影响定位和映射性能,而系统使用的直接技术预计会表现较差。因此,收集了记录在镜像环境中的图像序列的数据集Mirrenv,并用于评估现有代表性方法的性能。RGBD ORB-SLAM3和BUNDLEDEFUSION似乎随着镜像持续时间的增加显示了绝对轨迹误差的中等降解,而其余结果并未显示出显着降低的定位性能。事实证明,生成的网格图非常不准确,重建中的真实和虚拟反射碰撞。讨论了镜子环境中可能的错误和鲁棒性来源,概述了未来的方向,以验证和改善在平面镜的存在下VSLAM性能。Mirrenv数据集可从https://doi.org/10.17035/d.2023.0292477898获得。
目的:结肠癌的化学疗法需要改善,以减轻与细胞毒性药物相关的严重不良反应(AE)。这项研究的目的是开发一种具有实用应用潜力的新型靶向药物输送系统(TDD)。方法:TDD是通过在白蛋白纳米颗粒(NP)中加载多西他赛(DTX)构建的,这些纳米颗粒(NPS)用核糖素靶向的适体(AS1411)进行了功能化。结果:TDD(APT-NPS-DTX)的平均大小为62 nm,负电荷为-31.2 mV。dtx从白蛋白NP中释放出典型的持续发行轮廓。通过表达核仁素的CT26结肠癌细胞与对照细胞相比,优先摄入适体引导的NP。体外细胞毒性研究表明,APT-NPS-DTX显着增强了CT26结肠癌细胞的杀戮。重要的是,与未靶向的药物递送相比,APT-NPS-DTX治疗sig sig sig sig可提高抗肿瘤功效,并延长了CT26含有小鼠的存活,而不会提高系统性毒性。结论:结果表明APT-NPS-DTX在靶向治疗结肠癌方面具有潜力。关键字:适体,纳米颗粒,结肠癌,针对药物输送系统