正如著名量子物理学家 W. Pauli 曾经说过的,“表面是魔鬼发明的”。形成表面的粒子的非平衡状态和悬空键的存在将表面转变为具有高物理和化学反应性的 2D 反应器。当两个这样的活性表面匹配时,它们的界面变得更加活跃,从而产生新的特性或增强的性能。出于这个原因,人们投入了大量精力来设计纳米工程界面系统,以应用于人类生活的各个方面。这篇评论文章讨论了最近(主要是两年内)在设计用于能源和光子学应用的复杂、精密的碳基界面材料系统方面取得的进展,旨在强调此类系统的一些最有趣和最重要的例子。本文讨论了在平面和 3D(曲面)表面上发生的过程的差异,以指导复杂功能界面的设计和构建,重点关注对先进界面材料系统的持续发展特别重要的几点。
我们将物质的第四个状态称为血浆,表明电离,绝中性气体。气体介质中的电排放是一种正常且简便的方法,可以将气体转化为中等压力条件下的血浆。电子温度,电子密度和气体温度表征了血浆的质量。尤其是在电子温度和气体温度方面,我们有设计放电的空间为热等离子体(电子和气体温度均处于平衡状态)或非热等离子体(比气温高于气温的量级高)。这表明可以在一定程度上对受电子温度和气温控制的电子撞击反应和热化学作用组成的血浆化学作用。在这方面,我们认为血浆技术可以被视为一种多功能反应平台,可以在电动的未来中替换并增强传统燃烧和基于催化剂的燃烧。这种观点尤其突出了低温等离子体技术领域的燃烧社区的机会,详细介绍了等离子体化学的潜力及其与燃烧研究的相似之处。
摘要:癌症是一种高度增殖性疾病,其原因是细胞周期和凋亡失调、DNA损伤、修复系统缺陷等。癌症微环境在疾病进展中起着关键作用,因为它们包含不同类型的先天和适应性免疫细胞。建立炎症、先天免疫、适应性免疫和癌症之间相关性的最重要分子是癌症微环境中炎症细胞释放的分子。这些分子由免疫细胞分泌,可能激活癌症中的促肿瘤和抗肿瘤反应。在炎症微环境中,免疫抑制和免疫刺激信号的平衡状态对肿瘤抑制很重要。免疫治疗方法在癌症治疗中可能更有效。然而,免疫生物学和癌症的进步正在改善单独免疫疗法和/或与传统疗法相结合的前景。因此,本综述试图强调一种有前途的、具有未来意义的免疫治疗方法与传统治疗方式的结合。
1。超导性是什么?1。独立电子之间有限的有吸引力的相互作用,形成了一个库珀对,遵守非遗体的u(1)希格斯机制2。光子由于自发对称性破裂而导致的超导体中获得质量,从而导致Meissner效应2。SRF腔中有限的RF损失的基本起源是什么?1。有限温度下的热激活的准粒子的作用像正常导电电子,并在RF 2中造成损失。即使在绝对零温度下,由于几种不同的机制,例如通量振荡和子段状态的效果,仍然存在残留电阻,其最终起源并不完全理解。3。SRF腔内该领域的基本局限性是什么?1。超热场超过平衡状态的热力学临界场,将给出一个基本限制。超热场的动态计算仍然是基础研究的开放场
摘要。这项工作旨在合成和表征橙皮(OP)易于回收的磁复合材料(Orange Peel复合[OPC]),并将其用作e efff fromedscorembent,以从批处理模式下从水性溶液中清除工业药物(diclofenac(dfc))。OP和OPC通过各种技术进行表征,包括傅立叶变换红外,扫描电流显微镜与能量分散光谱,X射线di ff raction,Brunauer-Emmett – Emmett – Emmett – Emmett – Emmett – Emmett-thermogravimetric分析表明,OPC具有有趣的物理学物质性质,可与许多其他许多其他相比。发现OPC的DFC去除是时间依赖性的,并且在90分钟后获得平衡状态。此外,在30°C的温度下,该磁性材料的DFC吸附能力估计为37.0 mg·g -1,高于各种吸附剂。此外,热力学研究结果表明,DFC的去除是可行的,放射的和自发的过程。所有这些结果证明,在广泛的实验条件下,可以将磁化的OP废物视为从水溶液中除去DFC的有前途的材料。
审查旨在研究口服微生物群及其影响因素的多样性,以及口服微生物群与口腔健康的关联以及营养不良和口腔障碍的可能影响。口腔具有重大的微生物负担,与人体内部的其他器官相比,这尤其值得注意。在通常的情况下,微生物群以平衡状态存在;但是,当这种平衡受到干扰时,会出现多种并发症。牙齿是口腔中普遍的问题,主要是由细菌的定植和活性引起的,尤其是链球菌的活性。此外,这种环境还含有与牙龈,根尖和牙周疾病以及口腔癌发作有关的其他致病细菌。已采用各种策略来预防,控制和治疗这些疾病。最近,利用菌群(如益生菌,微生物群移植和替代口腔病原体)的技术吸引了眼睛。这项广泛的检查旨在提供口腔菌群及其代谢产物有关口腔健康和疾病的代谢,以及微生物群的弹性以及用于预防,控制和治疗该特定领域疾病的技术。
理解热力学定律中材料的平衡性质对于物理学、化学、材料科学、化学工程、机械工程等许多学科都至关重要。在本课程中,我们将回顾统计热力学理论,这是一种概率方法,它根据材料成分(原子、分子等)的微观变量来描述材料的平衡性质。此外,我们研究热力学定律在材料平衡和性质中的应用,为处理材料中的一般现象奠定了基础,包括相变、化学反应、磁性、弹性等。在课程的前半部分,我们将探讨统计力学的基本概念和技术,它为我们提供了研究多粒子系统的理论工具。在课程的第二部分,我们将研究热力学概念在从单组分到多组分系统的相平衡、相变和相图分析中的应用。最后,我们将结合整个课程中讨论的理论工具,通过计算技术检查真实物理系统的热力学性质,包括 i) 最先进的量子力学计算机程序(例如 abinit)以探索原子的微观行为,以及 ii) 用于热力学建模的计算机程序,以获得宏观平衡状态并构建相图(例如 FactSage、Pandat)。
摘要条件相互信息(CMI)i(a:c | b)量化给定a和c之间共享的相关量b。因此,它是多部分场景中两分相关性的更一般的量化符,在量子马尔可夫链理论中起着重要作用。在本文中,我们对CMI在不同温度下在两个浴场之间放置在两个浴场之间的量子链的非平衡状态(NESS)中的CMI行为进行了详细研究。这些结果用于阐明弹道和扩散运输方式背后的机制,以及它们如何影响链条不同部分之间的相关性。我们对在边界处受到本地Lindblad散射剂的一维纤维链的特定情况进行研究。此外,该链在每个地点还受到自一致的储层,这些储层用于调整弹道和扩散之间的传输。结果,我们发现CMI独立于弹道制度中的链尺寸L,但在扩散情况下用L衰减代数。最后,我们还展示了如何使用这种缩放来讨论非平衡稳态中局部热化的概念。
摘要。本报告的主要目的是阐明人工智能在工业物流系统的运作中将发生哪些变化。此外,还将说明全球物流的发展及其在技术发展各个阶段的特殊性。到目前为止的分析表明,物流工业系统将继续作为工业系统的子系统发挥作用,因为它们相互关联,具有某些相互关系,这些相互关系表征了它们的结构系统性和物流安全性。或者,当这些子系统之间的互连为整个工业物流系统的正常运作创造条件,为生产提供后勤支持时,物流系统将处于平衡状态。这本质上意味着,物质、财务和信息三种子系统之间的相互关系将与外部工业服务领域的子系统形成最佳关系。具有人工智能的物流系统子系统是该系统的一部分,它将允许在单独的物流活动或商业组织领域中解决物流系统的任务,并在更高层次上解决任务。人工智能物流系统的各组成部分按照一定的层次、方式和相互关系排列,形成更高层次的物流子系统,或人工智能物流系统。
我们讨论了与耗散环境耦合的多态系统随时间演化的约化密度矩阵 (RDM) 的一般特征。我们表明,通过相干图,即系统站点方格上 RDM 实部和虚部的快照,可以有效且透明地可视化动态的许多重要方面。特别是,相干图的扩展、符号和形状共同表征了系统的状态、动态的性质以及平衡状态。系统的拓扑结构很容易反映在其相干图中。行和列显示量子叠加的组成,它们的填充表示幸存相干的程度。虚 RDM 元素的线性组合指定瞬时群体导数。主对角线包含动力学的非相干分量,而上/下三角区域产生相干贡献,从而增加 RDM 的纯度。在开放系统中,相干图演变为围绕主对角线的带,其宽度随温度和耗散强度的增加而减小。我们用具有 Frenkel 激子耦合的 10 位模型分子聚集体的例子来说明这些行为,其中每个单体的电子态都耦合到谐波振动浴中。