2022 年 7 月 13 日 尊敬的金伯利·D·博斯 (Kimberly D. Bose) 秘书 联邦能源管理委员会 华盛顿特区东北第一街 888 号 20426 主题:Southwest Power Pool, Inc.,案卷编号 ER22-________ 提交发电机互连协议 尊敬的博斯部长: 根据《联邦电力法》第 205 节、16 USC § 824d 和联邦能源管理委员会(“委员会”)法规第 35.13 节、18 CFR § 35.13,Southwest Power Pool, Inc.(“SPP”)提交了一份未执行的发电机互连协议(“GIA”),其中 SPP 作为输电提供商,Flat Ridge 5 Wind Energy LLC(“Flat Ridge”)作为互连客户,Evergy Kansas Central, Inc.(“Evergy”)作为输电所有者(“Flat Ridge GIA”)。 1 Flat Ridge GIA 符合 2022 年 1 月 15 日之前生效的 SPP 开放接入输电关税(“SPP 关税”)中的形式 GIA;2 但是,SPP 正在根据 Flat Ridge 的要求提交未执行的 Flat Ridge GIA。
高管摘要随着技术的发展,人们越来越依赖互联网。在线平台,例如搜索引擎,电子商务网站,社交媒体和按需服务已成为数百万人生的重要性。这些平台利用算法和机器学习通过自动决策(ADM)为用户提供个性化体验。尽管具有有效的性质,但与这些ADM相关的歧视和行为操纵仍然存在。本文的重点是欧盟的方法来解决在在线平台中使用ADM引起的歧视和操纵行为的方法。本论文的主要研究问题是:“目前的欧盟数据保护法律框架以及拟议的人工智能调节,足以解决在在线平台上使用的自动决策(ADM)引起的歧视和操纵行为?”要回答这个问题,论文依赖于书面研究。它主要分析一般数据保护法规(GDPR)和拟议的人工智能法(AIA),以解决法规的充分性,以防止在线平台上ADM引起的歧视和操纵行为。论文揭示了ADM是一种通过基于规则或机器学习算法等基本技术来自动化个人决策的系统。尽管ADM提供了有效的结果,但它有可能带有偏见,产生不准确的结果以及推断有关个人可能导致行为操纵和歧视的数据的数据。本论文区分了在线平台上有问题的行为操纵实践,发现在有问题的方面存在道德上可接受的操纵实践,包括个性化建议,例如利用个人脆弱性的个性化广告。对于歧视性实践,它突出了两个有问题的领域:基于受保护特征的歧视,例如种族和基于非保护特征的歧视,例如社会经济地位。论文研究了GDPR和AIA,并探讨了如何调节使用ADM引起的行为的歧视和操纵。GDPR通过禁令进行监管,并使个人有权获得信息和访问权利的权利。相比之下,AIA 专注于潜在技术,并调节其对个人的影响。 本文发现,不需要新的法规来解决在在线平台中使用的ADM引起的行为的歧视和操纵。 但是,它为GDPR和AIA提供了明确而全面的规则的建议。 对于GDPR,本文建议根据第22条第1款GDPR的ADM规则明确,并将最低保障措施加入第22(3)条GDPR以增加保护。 对于第13,14条和15 GDPR,对所使用的概念的清晰度以及在前委员会和事前信息之间有明确的区别,以包括以用户为中心的透明度。专注于潜在技术,并调节其对个人的影响。本文发现,不需要新的法规来解决在在线平台中使用的ADM引起的行为的歧视和操纵。但是,它为GDPR和AIA提供了明确而全面的规则的建议。对于GDPR,本文建议根据第22条第1款GDPR的ADM规则明确,并将最低保障措施加入第22(3)条GDPR以增加保护。对于第13,14条和15 GDPR,对所使用的概念的清晰度以及在前委员会和事前信息之间有明确的区别,以包括以用户为中心的透明度。对于AIA,有五个建议,其中包括一个明确的AI系统定义,该定义确认了基础技术,推荐系统的定义,添加了非常大的在线搜索引擎,以实现完整的在线平台表示,对重要的
我们研究了无限 - 奖励马尔可夫决策过程(MDP)的无模型增强学习(RL)算法,这更适合涉及不持续操作的应用不分为情节。与情节/折扣的MDP相反,对于平均奖励设置,对无模型RL算法的理解理解相对不足。在本文中,我们考虑使用模拟器的在线设置和设置。与现有结果相比,我们开发了具有计算高效的无模型算法,以备受遗憾/样本的复杂性。在在线设置中,我们基于降低方差降低Q学习的乐观变体设计算法,UCB-AVG。我们表明UCB- AVG达到了遗憾的束缚e O(S 5 A 2 SP(H ∗)√
一种集成工具,用于比较不同组成(单体,低聚物,杂膜复合物)的蛋白质,RNA和DNA的3D结构,以及成对和多扣比对。纸(外部站点):https://www.nature.com/articles/s41592-022-01585-1
我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系 Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。