1. 简介 兰辛水电委员会 (BWL) 正在征集此全源提案征求书 (RFP),寻求有竞争力的提案,以提供高达 475 兆瓦的固定容量,满足未来的客户负荷并满足中部大陆独立系统运营商 (MISO) 的计划储备要求。这些提案将帮助 BWL 为大幅负荷增加做好准备,适应加速的煤电厂退役,并继续朝着碳中和的方向努力。全源 RFP 意味着 BWL 将考虑任何能够满足 BWL 全部或部分容量和清洁能源需求的电力供应或需求方资源,同时符合本文所述的要求。全源 RFP 可在以下链接获得:www.lbwl.com/2023-all-source-rfp Ascend Analytics (Ascend) 正在协助 BWL 管理此提案征求书 (RFP) 流程。此全源 RFP 流程可能会导致 BWL 达成一项或多项协议,也可能不会。 BWL 保留修改或取消此全源 RFP 的权利,以遵守监管政策或联邦、州或地方法律的变化。BWL 的 2023 年全源 RFP 寻求来自广泛产品类别的合格方(“投标人”或“响应者”)的提案,包括但不限于以下内容:
2023 年 3 月 7 日 作者:参谋军士Braden Anderson 第 374 空运联队公共事务 在全国阅读推广日之际,第 374 空运联队的指挥官和其他管理人员最近为横田空军基地的儿童保育设施 Yume 儿童发展中心揭幕。孩子们。 这个周年纪念日是由国家教育协会于1998年设立的,是一个向孩子们传达阅读乐趣的日子。之所以选择3月2日,是因为这是图画书作者苏斯博士的生日。 横田图书馆一直参与国防部福利服务管理局的暑期阅读计划,该计划旨在鼓励年轻人在暑假期间养成阅读的习惯。允许日本员工使用图书馆。
摘要 - 阿尔茨海默氏病(AD)是痴呆症最为流行的形式,比前列腺癌和乳腺癌杀死更多的人。结构磁共振成像(SMRI)广泛用于分析进行性脑部加重及其在区分AD方面的临床实用性。即使尚不存在有效治愈,早期发现对于减轻症状恶化的速度也是至关重要的。因此,本工作的目的是提出端到端3D卷积长的短期记忆(ConvlSTM)的基于全分辨率全分辨率全脑SMRI扫描的AD的框架。提出的框架应用于属于OASIS和ADNI数据库的427个全分辨率全分辨率全分辨率SMRI扫描,以提供较少的数据集特定于方法。的结果表明,我们的框架在区分AD的框架与认知上的Normal(CN)患者方面表现良好,达到86%的分类精度,敏感性为96%,F1评分为88%,AUC为88%,AUC的AUC为93%。测试是在可扩展的GPU云服务上进行的,并可以公开使用以保证可重复性。由于所提出的框架在没有AD的领域特定知识以及计算成本的过程(例如分割)的情况下表现良好,因此可以使用全脑SMRI扫描作为输入数据将其应用于其他精神疾病。索引术语 - Alzheimer病,深度学习,诊断,端到端方法,可扩展的GPU云,结构磁共振成像,3D卷积长的短期记忆
先进材料和设备技术在各个领域支撑着我们的生活。它们在智能手机、汽车、机器人和通信功能的信息和通信设备技术中发挥着核心作用。它们通过太阳能电池、可充电电池、功率半导体、磁铁/磁性材料、水和 CO 2 电解池以及分离膜等各种设备和材料为碳中和做出贡献。在医疗保健和医学领域,它们被用于人工微系统,例如针对 COVID-19 病毒的 mRNA 疫苗、用于早期诊断和生物信息监测的高灵敏度传感器设备以及用于预防、诊断和治疗癌症和脑疾病的设备和材料。纳米技术能够在非常小的尺度上观察、控制和处理物质的结构,对于实现这些材料和设备是必不可少的。最近与这一领域有着特别密切联系的世界事件是美国和中国争夺技术霸权而导致的全球供应链不稳定、COVID-19 疫情以及俄罗斯入侵乌克兰。这些世界形势的变化正在破坏“在最合适的地方生产,以提高整体效率”这一全球供应链的前提。作为经济安全最重要的问题,各国都在推行将稀缺资源和供应来源有限的工业产品列入清单、将重要技术恢复到国内生产等政策。冷战结束后持续的全球开放经济运动陷入停滞,民族主义和保护主义的兴起以及经济脱钩即将发生。这样的社会趋势不仅影响着经济领域,也影响着学术界的先进科学研究。国际上对这一领域的另一个重大要求是对可持续发展目标的贡献。特别是,为了在2050年实现碳中和,需要新开发可再生能源利用技术和减少CO 2排放的节能技术、CO 2捕获和利用技术、回收和再利用技术。除了开发这些新技术之外,还需要重新审视以前认为已经建立并优化的生产技术。为了在长期研发的领域取得突破,可能需要从材料和生产工艺的原理层面进行革新,因此这种基础研发非常需要密切的国际合作。在这种竞争与合作并存的困难局面下,日本也在实施双管齐下的政策。在“2050年实现碳中和的绿色增长战略”、“材料创新战略”、“量子技术与创新战略”等国家战略下,各种研发正在蓬勃发展。这些战略的实施是为了应对日本面临的挑战、对国际社会共同目标的贡献、建立经济安全等各个方面。此外,最近特别引人注目的是日本重启先进半导体工艺开发的努力。基于“半导体和数字产业战略”,日本积极投资研究
2.1.4 电解・燃料电池 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。140 2.2 バイオ・医疗応用 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。149
ken-ichi Yamada,Shun Ishibashi,Naohiro Sata,Marcus Conrad,Masafumi Takahashi#
高等材料科学(先进材料科学与工程) 3 3 全英讲授薄膜科学与工程(薄膜科学与工程) 3 3 全英讲授晶体结构与分析(晶体结构与分析) 3 3 材料分析(材料分析) 3 3 全英讲授电浆制造工艺与应用(等离子体加工与应用) 3 3 电子显微镜实务一(电子显微镜实践1) 2 2材料功能与设计(材料的功能与设计) 3 3 进阶表面处理(Advanced Surface Treatment) 3 3 半导体工程(Semiconductor Engineering) 3 3 太阳能电池特论(Special Topics on Solar Cells) 3 3 高分子材料特论(Special Topics on Polymer Materials) 3 3 人工智慧概论(Introduction to Artificial Intelligence) 3 3 电化学特论(Special Topics on Electrochemistry) 3 3 全英讲授高等材料选择与设计(Advanced Material Selection and Design) 3 3 有机光电材料与元件有机光电材料与器件 3 3 固体物理(Solid StatePhysics) 3 3 全英讲授奈米检测技术(Nano-writing Technology) 3 3 电子显微镜实务二(电子显微镜实践2) 1 1需先修习(电子队伍实务一)之后方可修习此门课程 半导体元件物理(半导体器件物理) 3 3 全英讲授复合材料(复合材料) 3 3 全英讲授进阶能源材料(先进能源材料) 3 3 全英讲授奈米生医与绿色材料(纳米生物与绿色材料) 3 3 奈米科技与应用(纳米技术与应用) 3 3 全英授课 光电工程与材料(光电工程与材料) 3 3 封装工艺与材料(包装与材料) 3 3 薄膜磨润学(薄膜摩擦学) 3 3
在 2023 年劳动生产率增长的 16 个行业中,TFP 是 8 个行业的最大贡献者。TFP 对劳动生产率增长的贡献在采矿业和零售业中尤为强劲。服务强度对教育服务业劳动生产率增长 6.4% 做出了重大贡献。服务强度也对金融和保险业以及其他服务业(政府行业除外)的劳动生产率增长做出了显着的积极贡献。劳动力构成指数使用年龄、教育、性别和相对工资等信息作为经验的替代,估计劳动力构成变化对工作时间的影响。2023 年,在所衡量的 21 个行业中,有 14 个行业的劳动力构成为负或没有贡献。
每个地方学校董事会应根据数据收集、数据分析以及如何利用数据来改善课堂教学和学生成绩,制定全部门的全面、统一、长期计划。该计划应在教职员工和社区的参与下制定,并应包括或符合州和联邦法律法规要求的所有其他全部门计划。每个地方学校董事会应每两年审查一次该计划并进行必要的修订。在通过任何全部门综合计划或其修订之前,每个地方学校董事会应在可行的情况下将该计划或修订发布在部门的互联网网站上,并在任何情况下,应将该计划或修订的纸质副本提供给公众查阅和复印,并应至少举行一次公开听证会,就全部门计划或修订征求公众意见。