西孟加拉邦太阳能现状:西孟加拉邦太阳能发电正在逐步发展,该邦在全国排名第 23 位,2022-23 年发电量为 1.2504 亿单位,累计太阳能发电量达到 194.06 兆瓦。虽然 2012 年的政策设定了到 2020 年可再生能源占 15% 的雄心勃勃的目标,但进展一直很稳定,最近的举措显示出希望。这些包括太阳能灌溉计划、地面和屋顶太阳能项目,以及在 PM-KUSUM 计划下安装太阳能水泵。该邦还在教育机构和政府大楼太阳能化方面取得了进展。目前,太阳能在该邦总装机容量中的贡献不到 1%,可再生能源占总电力消耗的 10%。展望未来,政府已经概述了通过 500 兆瓦太阳能园区和 1200 兆瓦太阳能光伏发电项目等项目挖掘该邦巨大太阳能潜力的计划。在政府持续的支持、补贴和积极政策下,未来几年扩大太阳能应用的基础正在奠定。
2023 年 4 月,Pennon Power 在法夫郡邓弗姆林收购了其首个可再生能源开发用地。该场地包括一个 45 MWp 太阳能发电场和一个 30 MW 2 小时共置电池存储系统,位于一座前露天煤矿的场地上。这一单一资产的年发电量将相当于目前整个集团的可再生能源组合。去年,我们还收购了 Pennon Power 旗下的三个新的可再生能源发电项目,这是我们对英国环境基础设施长期可持续增长的承诺的一部分。迄今为止,Pennon Power 已宣布在英国的这四个项目中投资约 1.45 亿英镑,一旦投入运营,发电量将高达 135 GWh,同时还有一个提供 30 MW 存储的两小时电池系统。与规模较小的现场太阳能发电相结合,这使集团有望确保其约 50% 的能源来自可再生能源。这一战略还将使集团受益,因为它可以降低我们近年来所经历的批发电力市场未来波动带来的风险,并将带来高于受监管水务业务的商业回报。
9月,在2022中国(江苏)新电力发展大会暨第十四届中国(江苏)国际风电产业发展高峰论坛上,上海电气风电集团有限公司(以下简称“风电集团”)凭借基于海神平台的EW8.5-230风机,荣获中国风电企业五十强“十大创新奖”。大会召开前夕,山东能源集团博中海上风电项目B站首台EW8.5-230风机于9月初成功吊装,成为迄今为止全球最大叶轮直径的风机吊装成果。该奖项由中国机械冶金建材工人技术协会评定。上海电气风电凭借数十年海上风电开发经验,针对中国中低风速海域,设计了本次评测的半直驱EW8.5-230风机。该风机转子直径230米,扫风面积约5.8个标准足球场。在平均风速7.5米/秒的情况下,该风机年发电量可达2800万度,可供1.45万户家庭一年使用,可减少煤炭消耗近1万吨,减少二氧化碳排放2.4万吨。
9月,在2022中国(江苏)新电力发展大会暨第十四届中国(江苏)国际风电产业发展高峰论坛上,上海电气风电集团有限公司(以下简称“风电集团”)凭借基于海神平台的EW8.5-230风机,荣获中国风电企业五十强“十大创新奖”。大会召开前夕,山东能源集团博中海上风电项目B站首台EW8.5-230风机于9月初成功吊装,成为迄今为止全球最大叶轮直径的风机吊装成果。该奖项由中国机械冶金建材工人技术协会评定。上海电气风电凭借数十年海上风电开发经验,针对中国中低风速海域,设计了本次评测的半直驱EW8.5-230风机。该风机转子直径230米,扫风面积约5.8个标准足球场。在平均风速7.5米/秒的情况下,该风机年发电量可达2800万度,可供1.45万户家庭一年使用,可减少煤炭消耗近1万吨,减少二氧化碳排放2.4万吨。
本文探讨了利用大型海上垂直轴风力涡轮机开发和实施风光互补发电厂的潜力。所提出的解决方案旨在通过将光伏模块直接集成到风力涡轮机结构中来提高能源产量和可靠性。本文考虑了各个风力涡轮机上部环形表面上的光伏模块示意图。本文描述了混合动力发电厂的运行情况。给出了估算发电厂功率特性的方程。案例研究分析了直径为 200 米的混合动力海上发电厂在三个气候差异显著的地点的潜在能源产量。计算结果表明,根据日照条件,混合动力发电厂风力部分的潜在年能源产量可达 1.5e4 MWh,安装在风力涡轮机顶环上的光伏部分的潜在能源产量可达 1528 MWh。本文强调了地理特征分析对于混合系统设计优化的重要性。即使在多云气候的北部地区,该电厂光伏部分的年发电量相对份额也不会低于 4%。结果表明,混合电厂的光伏组件可提供足够的能量来供应叶片旋转驱动器和其他辅助消费者,从而降低昂贵的储能设备的容量要求。
上海,2021 年 12 月 12 日——普丰新能源是一家领先的分布式太阳能平台,由普洛斯投资,今天宣布已完成七个分布式光伏 (PV) 项目的并网,总装机容量为 21.4 兆瓦 (MW),预计年发电量为 21,144,800 千瓦时。这批光伏项目分布在上海、天津、深圳、中山、东莞、荆门和南宁,包括许多第三方拥有的工业和商业屋顶。普丰新能源总经理 Al Luo 表示:“加速向可再生能源的过渡从未如此紧迫,屋顶光伏解决方案可以为节能减碳做出重大贡献。凭借我们强大的运营专业知识、对质量的承诺和高标准的客户服务,普丰有能力进入更多的商业和工业屋顶太阳能市场,包括大型制造业、商业办公室、数据中心和其他行业,以实现新的碳中和数字世界。”普丰新能源的目标是实现 1 千兆瓦太阳能发电量,相当于约 75 万户家庭的年用电量。普丰在中国 32 个电力需求旺盛的战略市场开展业务,例如北京、上海、广州和深圳,并计划扩大其清洁能源服务产品,包括光伏和智能储能系统。
摘要 本研究基于技术环境分析规划 (TEAP) 方法对奥贡州 20 个离网家庭的多分布式发电系统进行了分析。技术方面包括负载、DG 容量、年发电量和未满足的能源需求 (UED)。本文考虑并比较了不同的能源配置,例如基于 PV 的 DG、混合 DG:PV/沼气、PV/沼气/天然气、PV/沼气/柴油、PV/柴油和基于柴油的 DG。环境方面研究了 DG 与基于柴油的 DG 系统相比产生的排放量。本文还研究了温度对 PV 系统性能的影响。该模拟基于每日总需求 99.04 kWh/d,以及多种能源混合优化 (HOMER) 环境中的太阳、环境温度和生物质数据。获得的基于 PV 的 DG 的大小为 36.9 kW,在没有温度影响的情况下每年产生 54,565 kWh。结果表明,受到温度影响后,该值降至 48,268 kWh/年UED 为 7.84 %。沼气、天然气和柴油发电机的功率相同,为 13.2 kW。混合 DG 实现了 0% 的 UED,这意味着系统可用性为 100 %。结果进一步表明,上述混合 DG 的二氧化碳排放量在 2.21 至 15,448 千克/年之间,而家庭完全使用柴油 DG 运行时的二氧化碳排放量为 40,273 千克/年。该研究有助于理解能源系统分析。关键词:沼气、分布式发电、排放、可再生能源、天然气 1.0 引言现有的学术著作表明,缺乏电力供应是全球许多能源匮乏的社区所面临的问题之一,包括尼日利亚的社区[1,2];这种发展极大地影响了他们的生产力、社会和经济生活。这将继续激发人们开展研究,为农村社区的能源贫困问题提供生态友好的解决方案。
摘要 :以经济可行且环境友好的方式满足机构和组织的能源需求的挑战正变得越来越复杂,尤其是在尼日利亚这样的发展中国家。这项工作提出了一种有弹性的混合可再生能源系统,以供应尼日利亚阿布贾大学主校区的电力需求,估计为 900 kW,消耗率为 6300 kWh/天。HOMER 软件被用作建模工具,进行模拟、优化和敏感性分析,以探索利用阿布贾(MSW)与乌耶河的微型水力发电潜力和太阳能光伏资源混合以满足校园负荷需求的可行性。混合工厂具有以下组件规格:水力资源标称流量为 14.5 m3/s;最大水头为 10 m,潜在容量为 885 kW;MSW 工厂的规格确定为 500 kW 容量,废物处理量为 2.3 吨/天;太阳能光伏组件容量为 500 kW,城市固体废物的低热值为 15.84 MJ/kg。2 MW 混合电厂的总安装成本确定为 54.4 亿奈拉(722.5 万美元),年发电量计算为 799,000 kWh/年。模拟系统的净现值成本为 93.7 亿奈拉(12,486,120 美元),相应的 LCOE 为 55.2 奈拉/kWh(0.0736 美元/kWh)。碳排放量估计为每天 7.33 克,接近净零排放,表明所利用的可再生能源对环境友好。使用项目寿命、通货膨胀率、太阳辐照度、MSW 的低位热值 (LHV)、容量短缺和乌耶河的年平均体积流量对系统进行的敏感性分析表明,净现值成本随着工厂寿命的增加而增加,而能源的平准化成本随着寿命的增加而降低,从工厂寿命 25 年时的 ₦55.02/kWh 降低到 30 年时的 ₦43.73/kWh。
摘要:风能在电力行业脱碳过程中发挥着重要作用,并有助于实现温室气体净零排放。在过去十年中,风能部署稳步增长,占英国、丹麦和德国等国年发电量的四分之一以上。然而,随着风能份额的增加,系统运营商面临着管理过剩风力发电的挑战,因为风力发电具有不可调度的特性。目前,最常见的做法是风能削减,即风电场运营商获得约束性付款以减少其可再生能源生产。这种做法不仅导致大量可再生能源的浪费,而且相关的财务成本也会以电费增加的形式反映给纳税人。现场储能技术作为一种技术选择脱颖而出,可以最大限度地减少风能削减并以更高效的方式利用风能。为此,本文首先系统地评估了风电场的不同储能方案。其次,深入分析了苏格兰主要风力发电场的弃电和约束支付。第三,利用实际风能和市场数据集,进行技术经济分析,以研究现场储能规模与弃电量之间的关系。结果表明,与最近的部署类似,锂离子技术最适合现场储能。作为案例研究,选择了苏格兰的 Whitelee 和 Gordon bush 风力发电场。20 年回收期最合适的储能容量计算如下:(i) Gordonbush 风力发电场的储能规模为 100 MWh,可避免近 19% 的总弃电;(ii) Whitlee 风力发电场的储能规模为 125 MWh,可减少 20.2% 的弃电。本研究的结果将有助于分析未来风力发电场(包括浮岛、海港和其他浮动系统)的弃电减少潜力。
图 4-21:苏格兰 ULEMCo 改装的重型货车 (道路除雪机) ............................................................................. 50 图 4-22:法夫的垃圾收集车 (WCV) 改装为柴油/氢“双燃料”运行 ............................................................................................................. 51 图 4-23:在都柏林试用的氢燃料电池公交车 (44) ............................................................................................. 52 图 4-24:氢燃料电池双层公交车现在在都柏林和拉托斯之间运营 ............................................................................. 52 图 4-25:贝尔法斯特的氢燃料电池双层巴士 ............................................................................................. 53 图 4-26:阿伯丁的垃圾收集车改装为柴油/氢“双燃料”运行 (HyTIME 项目/H2 阿伯丁) .............................................................................................................................图 4-28:牛津郡的垃圾收集车 (WCV) 转换为柴油/氢“双燃料”运行 ............................................................................................................................................. 54 图 5-1:2020 年罗得岛风电场每小时风力发电量和调度代表性 ............................................................................................................................................. 56 图 5-2:基于罗得岛地区风电场数据的 2020 年调度可用性 ............................................................................................. 57 图 5-3:假设 84MW 风电场的电力出口优先从 50MW 电解器生产氢气 ............................................................................................................. 57 图 5-4:假设 84MW 风电场的电力出口优先于高达 21MW 的电力出口 ............................................................................................................................. 58 2020 年 1MW 太阳能发电场的年发电量 (47) ......................................................................... 58 图 5-6:2020 年 1MW 太阳能发电场的夏季和冬季太阳能发电量比较 (47) ........................ 59 图 5-7:Gaybrook AGI 的估计天然气输送流量 ............................................................................. 61 图 5-8:Gaybrook 输送网络中天然气流量的每小时平均值 (顶部) 和每月平均值 (底部) 曲线 ................................................................................................................ 62 图 6-1:使用氢能枢纽模型进行技术经济计算的程序 ...................................................................................................... 66 图 6-2:需求情景下的电解器尺寸 ........................................................................................................................ 68 图 6-3:需求和供应主导情景下的存储尺寸 ........................................................................................................ 69 图 6-4:Mullingar 网络的体积需求与 0.5MW 和 1MW 输出的比较 ............................................................................................. 72 图 6-5:Tullamore/Clara 网络的体积需求与 0.5MW 和 1MW 电解器输出的比较 ............................................................................................................................................. 73 图 8-1:Rhode 氢燃料区域供热网络的可能布局 ............................................................................................................. 83 图 9-1:通过使用氢气替代家庭供热燃料来抵消二氧化碳 ............................................................................................................. 87 图 10-1:拟议的 Rhode 氢气示范项目示意图...................................................... 92