SPECT/CT和PET/CT中的心脏紧急情况发生不断发生,但需要及时识别和适当的响应。预计18基于18 F的心肌灌注放射药物会增加心脏应激测试的使用;因此,对于包括宠物部门的核医学技术人员在内的人员至关重要,必须配备适当的培训和能力,以识别和管理恶化的心脏病患者或紧急心脏事件。本文提供了有关心脏应激测试的基础原理和使用辅助药物在压力后管理患者的基础原理。概述了急性恶化的核心脏病学患者,包括识别生命体征和基本心电图解释的关键变化。与紧急响应相关的关键药物已详细介绍。武装这些工具,核医学技术人员可以更谨慎地照顾高风险的核心脏病学患者。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
给定一个随机子空间H n在Hilbert Space的张量中均匀地选择了v n w w,我们认为相对于张量结构,H n h n元素的所有单数值的集合k n。在WIFED的背景下,该随机集获得了大量定律,并且在[3]中以相同的速度以相同的速度倾向于h n,v n的尺寸。在本文中,我们提供了衡量浓度估计值。K n的概率研究是由量子信息理论中重要问题的动机,并允许为尺寸提供最小的已知维度(184),即一个Ancilla空间,允许最小输出熵(MOE)违规。通过我们的估计,作为应用程序,我们可以为发生MOE发生的空间的维度提供实际界限。
摘要 - 在这项工作中,我们研究了最短矢量问题(SVP)在学习错误问题(LWES)方面产生的最短媒介问题(SVP)。lwes是模块环上方程式的线性系统,其中将扰动向量添加到右侧。这种类型的问题引起了人们的极大兴趣,因为必须解决LWES,以便能够破坏基于晶格的密码系统作为NIST在2024年发表的基于模块的键盘封装机制。由于这一事实,已经研究了几种基于经典和量子的算法来求解SVP。可用于简化给定SVP的两种著名算法是Lenstra-Lenstra-Lov´asz(LLL)算法和块Korkine-Zolotarev(bkz)算法。LLL和BKZ构造碱基可用于计算SVP的解决方案或近似解决方案。我们研究具有不同尺寸和模块化环的SVP的两种算法的性能。因此,如果LLL或BKZ在给定的SVP中的应用被认为是成功的,那么它们会产生包含SVP的溶液向量的碱基。
使用观察数据的探索性关联研究中的一个挑战是,预测因子与结果之间的关联可能是弱和稀有的,并且候选预测因子具有综合相关结构。错误的发现率(FDR)控制程序可以为探索性研究中的预测识别提供重要的统计保证。在最近建立的国家共同协作队列(N3C)中,电子健康记录(EHR)数据在同一组候选预测因素上是在多个不同的站点中独立收集的,从而提供了通过来自不同来源的信息来识别真正的关联。本文提出了一种一般的基于仿基的变量选择算法,以确定在有限样本设置下的团体级别条件独立测试(同时信号)的联合中的关联。该算法可以与一般回归设置一起使用,从而允许两种异质性
对网络攻击事件处理不当也可能暴露出企业更深层次的缺陷。一些国家已经开始强制报告网络攻击事件,但还需要做更多的工作来提高人们对威胁全球性的认识。随着犯罪团伙获得更复杂的工具并肆无忌惮地使用它们,威胁的数量和严重性将会增加。还应强调互联网和相关的高等教育。作为高级网络安全教育中心的网络学校的开设应该为具有不同网络安全资格和技能水平的广泛人群提供各种实践课程,从中学生和大学生到网络安全专家。那些将在量子物理、量子密码学和量子区块链开发的基础和应用研究方面处于领先地位的人将获得优势。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。
(SHRI JITIN PRASADA)(a)至 d):印度政府强调“全民人工智能”的概念,这与总理在全国范围内培育和推动尖端技术应用的愿景相一致。这一举措旨在确保人工智能惠及社会各界,推动创新和增长。政府致力于利用人工智能 (AI) 的力量,在医疗、农业、教育、政府治理、新闻部和其他领域造福人民。与此同时,政府也意识到人工智能带来的风险。幻觉、偏见、错误信息和深度伪造是人工智能带来的一些挑战。为了应对人工智能的挑战和风险,政府认识到需要建立护栏以确保人工智能的安全和可信。因此,中央政府在与相关利益相关方进行广泛的公众协商后,于 2021 年 2 月 25 日公布了《信息技术(中介机构指南和数字媒体道德规范)规则》2021 年(“2021 年 IT 规则”),该规则随后于 2022 年 10 月 28 日和 2023 年 4 月 6 日进行了修订。2021 年 IT 规则对中介机构(包括社交媒体中介机构和平台)规定了具体的法律义务,以确保他们对安全可信的互联网负责,包括迅速采取行动消除被禁止的虚假信息、明显虚假的信息和深度伪造。如果中介机构未能遵守 2021 年 IT 规则规定的法律义务,他们将失去《2000 年信息技术法》(“IT 法”)第 79 条规定的避风港保护,并应根据任何现行法律承担相应的诉讼或起诉。 《2023 年数字个人数据保护法》于 2023 年 8 月 11 日颁布,该法案规定数据受托人有义务保护数字个人数据,追究其责任,同时确保数据主体的权利和义务。政府已成立人工智能咨询小组,针对印度特定的监管人工智能框架,由印度总理首席科学顾问 (PSA) 担任主席,来自学术界、工业界和政府的不同利益相关者参与,目标是解决与制定负责任的人工智能框架有关的所有问题,以实现人工智能的安全和可信开发和部署。
摘要:垂直有序的介孔二氧化硅膜(VMSF)是由超毛孔和超薄垂直纳米渠道组成的一类多孔材料,它们在电分析传感器和分子分离的区域具有吸引力。然而,VMSF很容易从碳纤维电极中掉下来,从而影响其广泛的应用。在此,氮化碳纳米片(CNN)作为粘合剂层,可在玻璃碳电极(GCE)上稳定VMSF生长。CNN可以与VMSF的硅烷醇基团共价结合,从而有效地促进了VMSF在GCE表面上的稳定性。受益于VMSF的许多开放纳米孔,用碳水化合物抗原15-3(CA15-3)特异性抗体修改VMSF外表面,可以通过硅胶内部硅含量进行电化学探针的目标传输,从而通过硅胶内部降低敏感性检测到1000的nosion nanochnels,从0.47 mu/mL的检测极限。此外,提出的VMSF/CNNS/GCE免疫传感器能够高度选择性,准确地确定尖峰血清样品中的Ca15-3,该样品提供了一种简单有效的电化学策略,可在复杂的生物学标本中检测各种实用生物标志物。
摘要 - 提出了通过闭环机器学习的低地球轨道(LEO)卫星轨道预测的框架。通过改进地面车辆的导航,与使用简化的一般扰动4(SGP4)Orbit Orbit Expagator相比,使用“非合作” LEO卫星信号来证明该框架的功效,并通过“非合作” LEO卫星信号导航。该框架称为LEO-NNPON(具有机会性导航的NN预测),假定以下三个阶段。(i)LEO卫星第一通过(跟踪):具有其位置提取物测量值的陆地接收器(伪造,载波相位和/或多普勒)从接收到的Leo卫星的信号中,使其能够估算到达的时间。LEO卫星的状态用SGP4传播的两行元素(TLE)数据初始化,随后在卫星可见性期间通过扩展的Kalman滤波器(EKF)估算。(ii)未观察的LEO卫星(预测):在估计的ephemerides上对具有外源输入(NARX)NN的非线性自回归进行了训练,并用于传播Leo卫星的轨道,以期在此期间不观察卫星。(iii)LEO卫星第二通道(导航):配备LEO接收器的地面导航器(例如,车辆),从Leo卫星的下链路信号中提取导航可观察到可观察到的可观察到的可观察到的可观察到的导航器。这些导航可观察物用于以紧密耦合的方式(例如,通过EKF)以紧密耦合的方式帮助导航器安装的惯性测量单元(IMU)。LEO卫星状态是从NN预测的胚层获得的。提出了装有工业级IMU导航4.05 km的地面车辆的实验结果,并提供了来自两个Orbcomm卫星的信号。比较了三个车辆导航框架,所有车辆导航框架都用全球导航卫星系统(GNSS) - 惯性导航系统(INS)位置和速度解决方案进行初始化。 (ii)使用SGP4传播的Leo Esphemerides的Leo-Aided Ins; (iii)与狮子座的狮子座。独立的三维(3-D)位置根平方(RMSE)为1,865 m,而SGP4的Leo Aided INS为175.5 m。 Leo-Nnpon的Leo Aided Ins为18.3 m,证明了拟议框架的功效。