Sandia国家实验室是由Sandia,LLC国家技术与工程解决方案管理和运营的多军性实验室,这是一个全资拥有的
本文介绍了欧盟资助的研究项目 AGILE(2015 – 2018)中针对整体飞机设计的多学科设计和优化 (MDO) 领域的研究活动中所进行的方法研究。在 AGILE 项目中,来自欧洲、加拿大和俄罗斯的 19 个工业、研究和学术合作伙伴组成的团队正在共同开发下一代 MDO 环境,旨在大幅降低飞机开发成本和上市时间,从而生产出更便宜、更环保的飞机。本文介绍了 AGILE 项目结构,并描述了第一年取得的成果,这些成果催生了参考分布式 MDO 系统。然后,重点介绍了第二年研究的各种新型优化技术,所有这些技术都旨在简化复杂工作流程的优化,这些工作流程的特点是学科相互依赖性高,设计变量多,涉及多层次流程和多合作伙伴协作工程项目。本文针对传统飞机引入并验证了三种优化策略。首先,在机翼设计问题上使用基于纳什博弈和遗传算法的多目标技术。然后对发动机舱设计进行深入研究,使用基于代理的优化器来解决单目标问题。最后采用稳健方法来研究参数不确定性对发动机舱设计过程的影响。这些新功能
动机:通过将有向无环图 (DAG) 模型应用于蛋白质组数据推断出的有向基因/蛋白质调控网络已被证明可有效检测临床结果的因果生物标志物。然而,在 DAG 学习中仍然存在尚未解决的挑战,即联合建模临床结果变量(通常采用二进制值)和生物标志物测量值(通常是连续变量)。因此,在本文中,我们提出了一种新工具 DAGBagM,用于学习具有连续和二进制节点的 DAG。通过为连续和二进制变量使用适当的模型,DAGBagM 允许任一类型的节点在学习图中成为父节点或子节点。DAGBagM 还采用了引导聚合策略来减少误报并实现更好的估计精度。此外,聚合过程提供了一个灵活的框架,可以稳健地整合边缘上的先验信息以进行 DAG 重建。结果:模拟研究表明,与常用的将二进制变量视为连续变量或离散化连续变量的策略相比,DAGBagM 在识别连续节点和二进制节点之间的边方面表现更好。此外,DAGBagM 的表现优于几种流行的 DAG
我们引入一个在三元树上定义的费米子到量子比特的映射,其中 n 模式费米子系统上的任何单个 Majorana 算子都映射到对 ⌈ log 3 (2 n + 1) ⌉ 个量子比特进行非平凡作用的多量子比特 Pauli 算子。该映射结构简单,并且是最优的,因为在任何对少于 log 3 (2 n ) 个量子比特进行非平凡作用的费米子到量子比特映射中都不可能构造 Pauli 算子。我们将它应用于学习 k 费米子约化密度矩阵 (RDM) 的问题,该问题与各种量子模拟应用有关。我们表明,通过重复单个量子电路 ≲ (2 n + 1) k ϵ − 2 次,可以并行确定所有 k 费米子 RDM 中的各个元素,精度为 ϵ。这一结果基于我们在此开发的方法,该方法允许人们并行确定所有 k 量子比特 RDM 的各个元素,精度为 ϵ,方法是将单个量子电路重复 ≲ 3 k ϵ − 2 次,与系统大小无关。这改进了现有的确定量子比特 RDM 的方案。
行为影响温度。偏移量 穿上或脱下毛衣 / 夹克 衣服变化 ± 0.35 ± 2.2 o C 紧身 / 宽松衣服 衣服变化 ± 0.26 ± 1.7 o C 戴上或脱下领子和领带 衣服变化 ± 0.13 ± 0.8 o C 坐着或走动 新陈代谢变化 ± 0.4 ± 3.4 o C 压力水平 新陈代谢变化 ± 0.3 ± 2.6 o C 喝冷饮 新陈代谢变化 -0.12 + 0.9 o C 喝热饮 / 食物 新陈代谢变化 +0.12 - 0.9 o C 操作台式风扇 速度变化 +2.0m/s + 2.8 o C 操作吊扇 速度变化 +1.0m/s + 2.2 o C 打开窗户 速度变化 +0.5m/s + 1.1 o C 表 - 适应行为对最佳舒适温度的影响。摘自 BRE
细胞培养系统已用于研究遗传分析,激素调节,细胞因子分泌,病毒滴定和药物敏感性,以代替活动物,因为培养的细胞模仿了实验中的整个生物体。因此,将来将增加细胞培养系统的有用性。特别是,在细胞毒性化合物的assray中,不需要动物的系统非常出色。是从大鼠,小鼠和人类等乳腺组织中建立了大量细胞系,因为它们已在实验室中被用于实验室。此外,精确地研究了许多生化反应。最近,不仅从科学的角度,而且还从社会观察者那里讨论了环境激素(内部灌木丛)或二恶英对生物体的影响。要评估这些影响,还应检查其他动物,因为它们直接暴露于环境污染物。因此,鱼是研究这些综合对生物体影响的最好动物之一(Babich和Borenfreund,1987)。此外,许多来自g,鳍,性腺,睾丸,肾脏等的鱼类细胞系。(Wolf and Mann,1980;
细胞培养系统已用于研究遗传分析,激素调节,细胞因子分泌,病毒滴定和药物敏感性,以代替活动物,因为培养的细胞模仿了实验中的整个生物体。因此,将来将增加细胞培养系统的有用性。特别是,在细胞毒性化合物的assray中,不需要动物的系统非常出色。是从大鼠,小鼠和人类等乳腺组织中建立了大量细胞系,因为它们已在实验室中被用于实验室。此外,精确地研究了许多生化反应。最近,不仅从科学的角度,而且还从社会观察者那里讨论了环境激素(内部灌木丛)或二恶英对生物体的影响。要评估这些影响,还应检查其他动物,因为它们直接暴露于环境污染物。因此,鱼是研究这些综合对生物体影响的最好动物之一(Babich和Borenfreund,1987)。此外,许多来自g,鳍,性腺,睾丸,肾脏等的鱼类细胞系。(Wolf and Mann,1980;