光伏发电企业上网电价”的加价幅度,应按共享升压站利用率加价。当共享升压站利用率发生变化时,调整后的上网电价加价幅度自新接入光伏设施建成之日起生效,适用于接入同一共享升压站的所有光伏设施。前述利用率按照升压站并网容量除以升压站总容量计算(四舍五入至小数点后第四位)。若升压站容量有所扩建,则利用率以扩建后的升压站部分为准,按照扩建部分的站并网容量除以升压站总容量计算。
目前安装的绝大多数太阳能光伏系统都是并网的,这意味着电流会流到家庭的配电板,然后由家庭的电气设备使用,多余的电力则输出回电网。典型的并网太阳能光伏系统由太阳能电池板本身、将其固定在屋顶或地面上的支架设备、一个或多个将电能转换成更可用的交流电形式的逆变器,以及将经批准的系统连接到家庭和/或电网所需的任何其他电气设备组成。这些“系统平衡”组件在大多数情况下都是加拿大电气规范所要求的,包括适当尺寸的电线、断路装置、接线盒和断路器,以及
光伏发电企业”的上网电价加价幅度,应按共享升压站利用率计算。当共享升压站利用率发生变化时,调整后的上网电价加价幅度自新接入光伏设施建成之日起生效,并适用于接入同一共享升压站的所有光伏设施。前述利用率按照升压站并网容量除以升压站总容量计算(四舍五入至小数点后第四位)。若升压站容量有所扩建,则利用率以扩建后的升压站部分为准,按照扩建部分的升压站并网容量除以升压站总容量计算。
并网光伏系统:最常见的太阳能系统类型是并网或公用设施互动系统。在这种设计中,您的光伏系统为您的家庭提供电力,而超出您能源使用量的任何多余电力都将输送回公用电网。如果您的太阳能光伏系统没有产生足够的能量来满足您的需求,例如在晚上没有阳光时,那么您将从公用设施获得电力。出于安全原因,如果公用电网断电,您的太阳能光伏阵列也会关闭。这样做是为了防止正在维修的公用线路工人受伤。这种类型的系统设计还允许净计量。
系统类型 可用系统组件 并网、光伏电池板、安装系统、逆变器、净计量交流和直流断路器、雷电和接地 太阳能电气故障保护、接线盒、远程计量系统显示设备和从光伏电池板到与住宅或电气负载的互连点的相关电气接线材料 并网、光伏电池板、安装系统、逆变器、净计量充电控制器、电池、电池盒、交流和太阳能电气直流断路器、雷电和接地故障保护系统、接线盒、远程计量 电池备用显示设备和从光伏电池板到与住宅或电气负载的互连点的相关电气接线材料 独立太阳能电气交流系统
1. 使用 ESS 助手加载 Victron 逆变器(MultiPlus 或 Quattro)。有关 ESS 的更多信息,请参阅以下链接:ESS 设计和安装手册。 2. 将 Victron 逆变器连接到电池组。 3. 通过 VEBus 连接计算机,使用最新版本的软件 VEConfigure 配置系统。 4. 转到“助手”选项卡,并使用 ESS 助手加载 Victron 逆变器。 5. 根据您所在的地区,您可能需要更改助手中的默认设置。 6. 下表显示了不同位置的首选 Enphase 电网配置文件和相应的 Victron 设置。
摘要 本文提出了并网住宅光伏系统的日前优化能源调度技术,以符合电价并优化家庭运营效益。该解决方案被视为优化问题,目标是最大化家庭能源效益,优化变量是电力调度率,即出售给电网的光伏电力与供应负载后的额外光伏能源之比。之后,使用粒子群优化 (PSO) 解决公式化的非线性优化问题。使用位于尼泊尔拉利特布尔的典型并网太阳能供电系统(具有太阳能光伏系统和电池储能系统)进行验证分析。研究结果表明,建议的能源调度策略与启发式优化方法相结合,可成功实现多种能源的优化能源调度,从而在分时电价下实现财务效益最大化。
由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率