我们的参考。:B1/15C 2024 年 9 月 27 日 行政长官 所有授权机构 尊敬的先生/女士, 关于金融服务业生成人工智能的研究论文 我写信通知您关于金融服务业生成人工智能 (GenA.I.)的研究论文的发表。本文探讨了 GenA.I. 的变革潜力。及其对金融业的影响,特别是在运营效率、风险管理和客户参与方面。在“金融科技 2025”战略的“所有银行都采用金融科技”倡议的支持下,香港金融管理局(金管局)一直与其他金融监管机构密切合作,推动跨部门采用金融科技,人工智能是重点关注领域。本文深入分析了 GenA.I. 在金融领域采用的现状,重点介绍了通过采访金融机构和技术解决方案提供商确定的关键应用和挑战。它还概述了与 GenA.I. 相关的关键风险管理考虑因素,包括数据隐私、网络安全、信息不准确性和算法偏差,并就治理结构和部署方法提出了建议,以支持负责任的创新。我们鼓励所有授权机构阅读本文,并考虑如何对 GenA.I.进行全面测试,例如通过新的 GenA.I.沙盒 1 ,并负责任地集成到授权机构的运营、服务产品和风险管理系统中。如果您对本文有任何疑问,请通过 All-banks- go-fintech@hkma.gov.hk 与我们联系。此致, Carmen Chu 执行董事(银行监管) 附件
合成数据与人工智能医疗设备的创新、评估和监管 Puja Myles,公共卫生硕士、博士;Johan Ordish,文学硕士;Richard Branson,理学硕士、文学硕士 摘要 合成数据是模仿真实数据的属性和关系的人工数据。它有望促进数据访问、验证和基准测试,解决缺失数据和欠采样、样本增强以及在临床试验中创建对照组的问题。英国药品和保健产品管理局 (MHRA) 正在利用其目前对高保真合成数据开发的研究,制定其对经过合成数据训练的人工智能医疗设备的监管立场,并将合成数据作为人工智能医疗设备验证和基准测试的工具。 关键词 人工智能作为医疗设备 (AIaMD)、数据隐私、健康数据、合成数据、验证、监管 简介 人工智能 (AI) 在医疗和社会保健领域的应用预计将会兴起,这意味着人工智能作为医疗设备 (AIaMD) 将成为医疗设备中越来越突出的子类别。 1 因此,医疗器械法规是否适合人工智能变得越来越重要,制造商是否了解并遵守其义务也变得越来越重要,其中最主要的是证明其 AIaMD 具有良好的效益风险比。2 强大的数据集是展示 AIaMD 性能的核心,通常是此类设备开发的主要障碍。3 医疗器械监管机构有责任确保制造商拥有履行这些义务所需的工具,并提供更广泛的支持以鼓励此类创新设备的开发。合成数据集的开发很可能成为这样一种辅助工具。本文概述了 MHRA 在研究和开发合成数据方面的努力,并考虑在更广泛的改革背景下使用合成数据,以确保医疗器械法规适用于人工智能。合成数据概况 近年来,人们对合成数据的兴趣日益浓厚,原因有很多,包括在数据治理法规更加严格的世界中可能易于获取、保护患者隐私、在机器学习算法背景下的基准测试和验证能力,以及解决真实数据局限性的能力,如数据缺失、欠采样和样本量小。4 更重要的是,尽管合成数据的潜在应用已经讨论了多年,但直到最近,合成数据生成方法的进步才能够产生高质量的合成数据。5 定义合成数据 从概念上讲,合成数据是模仿真实数据的属性和关系的人工数据。合成数据的质量取决于生成合成数据的方法。合成数据的质量通常用其“效用”或“保真度”来描述。“能够捕捉各种数据字段之间复杂的相互关系以及真实数据的统计特性的合成数据集可称为“高实用性”或“高保真度”合成数据集。在患者医疗保健数据方面,高保真度合成数据集将能够捕捉复杂的临床关系,并且在临床上与真实患者数据难以区分。高效用合成数据的生成往往需要大量资源,并且根据需要合成数据的应用,使用低效用或中等效用合成数据可能是可以接受的。
本文介绍了电动汽车 (EV) 应用中电池-超级电容器 (SC) 混合储能系统 (HESS) 的尺寸指南和能源管理 (EM) 基准。我们解释了如何优化 HESS 尺寸以最大限度地减少 EV 的电池退化和财务成本。我们还说明了一种最佳 EM 基准,无论实施何种 EM 技术,都可以最大限度地减少电池退化。通过将 EM 问题与尺寸问题分离,我们揭示了电池退化随 HESS 尺寸变化的总体趋势,这与 EV 的设计参数以及电池和 SC 的规格无关。通过 HESS 尺寸确定方法讨论了车辆寿命内的电池更换和 HESS 成本。通过运动型电动汽车的案例研究,测试了所提出的尺寸指南和 EM 基准的有效性。结果表明,与仅使用电池的储能系统相比,尺寸优化的 HESS 可将电池寿命延长 37%,与未优化的 HESS 设计相比,可将车辆寿命 HESS 成本降低高达 39%。