摘要:随着物联网 (IoT) 的发展,无论在哪个领域,部署的监控应用数量都在大幅增加:智慧城市、智慧农业、环境监测、空气污染监测等等。LoRaWAN(长距离广域网)架构具有长距离通信、抗干扰能力强和能耗低等特点,是支持此类应用的绝佳选择。但是,如果终端设备数量很多,LoRaWAN 的可靠性(以数据包传送率 (PDR) 衡量)会因过多的冲突而变得不可接受。在本文中,我们提出了两种不同的解决方案系列,以确保无冲突传输。第一个系列基于 TDMA(时分多址)。所有集群按顺序传输,并且允许属于同一集群的最多六个具有不同扩频因子的终端设备并行传输。第二个系列基于 FDMA(频分多址)。所有集群并行传输,每个集群使用自己的频率。在每个集群内,所有终端设备按顺序传输。从 PDR、终端设备能耗和支持的最大终端设备数量等方面比较它们的性能。模拟结果证实了理论结果,并显示了所提解决方案的高效性。
我们介绍了 Geomstats,一个用于非线性流形计算和统计的开源 Python 工具箱,例如双曲空间、对称正定矩阵空间、变换李群等等。我们提供面向对象且经过广泛单元测试的实现。除此之外,流形还配备了黎曼度量族,以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了在流形上进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持,即 NumPy、PyTorch 和 TensorFlow,从而实现 GPU 加速。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块来促进微分几何和统计学的研究,并使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
了解人类大脑是 21 世纪的主要科学挑战之一。在此背景下,21 世纪初,法国原子能委员会 (CEA) 启动了一项计划,旨在构思和建造第一台以 11.7T 运行的人体 MRI 扫描仪。随后经过十多年的开发,磁体才得以交付,而又花了六年时间才完成调试,并最终获得监管机构的批准,在这种磁场下获取有史以来第一张活体人类大脑图像。我们部署了并行传输工具来缓解射频场不均匀性问题并控制特定吸收率。为了确保在如此高的场强下对人体成像的安全性,我们对志愿者进行了生理、前庭、行为和遗传毒性测量。数据显示没有不良影响的证据。前所未有的
我们介绍了 Geomstats,这是一个开源 Python 包,用于对非线性流形(例如双曲空间、对称正定矩阵空间、变换李群等)进行计算和统计。我们提供面向对象且经过大量单元测试的实现。流形配备了黎曼度量系列以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了对流形进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持——即 NumPy、PyTorch 和 TensorFlow。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块,既可以促进微分几何和统计学的研究,又可以使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
胼胝体发育不全 (CCA) 是最常见的先天性畸形之一,其神经发育结果不确定,尤其是当疾病被孤立时。为了向父母提供明智的咨询,在怀孕早期确定与预测结果相关的解剖标记至关重要。使用 CCA 对胎儿大脑进行定量探索的情况很少见,而且主要限于对特定大脑结构的研究。在这里,我们提出了一种基于微分同胚变换的胎儿大脑磁共振成像 (MRI) 分析流程。它包括两个步骤:半自动胎儿 MRI 预处理程序和量化与正常发育的解剖偏差的流程。MRI 预处理之后,使用配准将每个体积胎儿大脑与年龄匹配的健康模板大脑在全球范围内进行比较。将变形并行传输到同一空间以纠正胎儿之间的年龄差异。使用主成分分析和分类确定了 CCA 特有的变形模式。该流程在回顾性选择的 38 个健康胎儿和 73 个 CCA 胎儿的 MRI 上进行了测试。根据更多局部分析,最相关的 14 分类变形模式将众所周知的大脑改变与 CCA 相结合。15 这项初步工作有望定量探索异常胎儿大脑 16 并将在未来用于识别与不良临床结果相关的解剖特征 17。18
摘要 最先进的导航经颅磁刺激 (nTMS) 系统可以显示 TMS 线圈相对于受试者大脑结构磁共振图像 (MRI) 的位置并计算感应电场。然而,TMS 的局部效应会通过白质网络传播到大脑的不同区域,目前还没有商业或研究神经导航系统可以在 TMS 期间实时突出显示大脑的结构连接。缺乏实时可视化可能会忽略大脑连接的关键个体间差异,并且无法提供针对大脑网络的机会。相比之下,实时纤维束成像可以即时调整参数和详细探索连接,这在计算上效率低下,并且受限于离线方法。为了针对大脑结构连接,特别是在基于网络的治疗(如重度抑郁症)中,需要一种基于实时纤维束成像的神经导航解决方案来解释每个人独特的大脑连接。这项工作的目的是开发一种实时纤维束成像辅助 TMS 神经导航系统并研究其可行性。我们提出了一个模块化框架,使用并行传输方法将扩散 MRI 数据的离线(准备)分析与在线(实时)概率纤维束成像无缝集成。对于纤维束成像和神经导航,我们分别结合了我们的开源软件 Trekker 和 InVesalius。我们使用合成数据和四名健康志愿者的 MRI 扫描来评估我们的系统,这些数据和扫描数据是通过多壳高角分辨率扩散成像协议获得的。通过比较流线计数和重叠与基于一亿条流线滤波的离线纤维束成像结果来研究四个主要 TMS 目标,评估了我们的在线方法的可行性。我们开发的实时纤维束成像辅助 TMS 神经导航系统展示了先进的纤维束成像技术,具有交互式参数调整和通过创新的不确定性可视化方法实时可视化数千条流线的功能。我们的分析表明,受试者和 TMS 目标在流线数量方面存在相当大的差异,例如,虽然在受试者 #4 的视觉皮层 (V1) 上的 TMS 目标上观察到了 15,000 条流线,但在受试者 #3 的 V1 中,没有获得流线。与离线纤维束图的重叠分析表明,实时纤维束图可以快速覆盖目标区域连接的很大一部分,通常在几秒钟内超过离线方法的覆盖范围。例如,在