1-LS3-1 通过观察构建一个基于证据的理论,即幼小的植物和动物与它们的父母相似但不完全相同。1-LS1-1 * 使用材料设计一个解决人类问题的方法,通过模仿植物和/或动物如何使用它们的外部部分来帮助它们生存、成长和满足它们的需求。1-LS1-2 阅读文本并使用媒体来确定父母和后代的行为模式,这些模式有助于后代生存。K-2-ETS1-1 提出问题、进行观察并收集有关人们想要改变的情况的信息,以定义一个可以通过开发新的或改进的物体或工具来解决的简单问题。K-2-ETS1-2 绘制一个简单的草图、绘图或物理模型来说明物体的形状如何帮助它根据需要发挥作用以解决给定的问题。K-2-ETS1-3 分析两个旨在解决同一问题的物体的测试数据,以比较每个物体性能的优缺点。
在高质量的学龄前教室里,您可能会看到一位老师跪在地板上听孩子的故事,或者帮助两个孩子就分享玩具进行谈判。孩子们忙于将自己的物品放在幼小中,独立洗手,并注册教室工作 - 以他们的名义查找或打印字母。一个家庭停下来与老师在门外交谈,并进行了简短的对话,下周将在一次会议上接听。也许一位老师注意到许多孩子在街角为他们的动物建造谷仓,并选择了一本关于晨圈的农场动物的书,并将玉米和玩具拖拉机添加到感觉桌上以扩展比赛。孩子们在共同的饭菜上兴奋地互相闲聊,并把外套伸到外面。高质量的学龄前儿童正在建立孩子一生所需的技能:沟通和身体技能;社会情感技巧,例如轮流,应对强烈的情绪以及与朋友进行谈判;通过课堂惯例和自我保健发展独立性;了解世界;以及早期阅读和数学技能。在幼儿期投资的社区看到了后来的学术和社会上的回报。
线性覆盖时间不太可能。。。。。。。q uentin d ubroff和j eff k ahn 1均匀的树在拓扑多边形,SLE的分区函数(8)以及C = -2对数CFT中的相关性。。。。。。。。。。。。。。。。。。。。。。。。m ingchang l iu,e veliina p eltola和h a a a a a a a a a a a a a a a w u 23通过噪声正规化,用于由高斯粗糙路径驱动的粗糙差分方程式,以及d uboscq 79相关性衰减,用于较弱的brown a rka a rkaiy a rkari和s kyot a的相关性衰变无界域中的正常反射:从瞬态到稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。m iha brešar,leksandar m ijatovi´ c和ndrew w ade 175溶液在随机热方程中,在临界状态下不会爆炸,而随机热方程未爆炸。。。。。。。。。。。。。。。。。。。。michael s alins 223随机矩阵的自由总和h ong c hang j j i和j aeewhi p ark 239一种确定点过程方法的缩放和局部限制随机幼小tableaux的确定点过程方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。j acopo b orga,cédricBoutillier,v alentinféray和p ierre -loïcMéliot299 A超级偏见的当地时代的随机微分方程
新型植物育种技术 (NPBT) 旨在突破果树品种的传统育种限制,以获得感官性状改良、抗生物和非生物胁迫的新品种,并通过(克隆)选择保持数百年来的果实品质。了解控制特定性状的基因对于 NPBT 的使用至关重要,例如基因组编辑和同源杂交。在研究包括柑橘在内的果树品种的国际科学界框架内,NPBT 主要用于应对病原体威胁。柑橘可以利用 NPBT,因为它具有复杂的物种生物学(无籽、无融合生殖、高杂合性和长幼期)和体外操作能力。据我们所知,通过转基因对柑橘进行基因组编辑已成功利用抗性基因 CsLOB1 在甜橙和葡萄柚中诱导出对柑橘细菌性溃疡病的抗性。未来,NPBT 还将用于改善果实性状,使其更健康。应用 NPBT 后植物的再生是一个瓶颈,因此有必要优化当前协议的效率。我们将讨论使用来自幼小的离体植株和成熟植株的外植体的优缺点。本综述中讨论的其他主要问题与对无标记系统的要求以及缩短漫长的幼苗期有关。本综述旨在总结文献中适用于柑橘的方法和途径,重点关注使用 NPBT 之前观察到的原则。
基因组学彻底改变了动物生产,在选择和繁殖更健康,生产和可持续动物中起着至关重要的作用。本科学专注于生物基因组的研究,提供了有关基因及其相互作用的宝贵信息。在动物遗传改善中,其最引人注目的应用之一是基因组选择,它可以更准确地预测动物基因组值,从而可以最准确地选择具有高遗传优点的动物,尤其是当应用于幼小的动物甚至胚胎时。这种方法不仅提高了选择的准确性,而且可以加速遗传进步,从而增加了农业生产和可持续性的提高。这些进步的一部分是由于对谱系信息的亲属关系和验证的最佳估计,超过了常规家谱的局限性,这可能导致在估计由于血统错误引起的动物遗传价值的不准确性。此外,基因组学还在种族和遗传多样性的保护中发挥了基本作用。随着DNA测序技术变得越来越负担得起,可以识别和保留动物种群中有价值的遗传变异,从而降低灭绝和遗传均质化的风险。此外,基因组映射研究在研究和识别与动物创造中具有经济重要特征相关的候选基因方面至关重要。因此,动物生产中的基因组是一种强大的工具,可驱动遗传改善并提高产品效率和可持续性。
真核翻译起始因子 4E (EIF4E) 是许多植物物种中马铃薯病毒感染的已知易感因子。大麦黄花叶病毒病是由大麦黄花叶病毒 (BaYMV) 和大麦温和花叶病毒 (BaMMV) 引起的,可导致冬大麦产量损失高达 50%。秋季,幼小的大麦植株的根部被土传的根瘤寄生虫 Polymyxa graminis L. 感染,该寄生虫是病毒载体。病毒建立并系统性扩散到植物上部后,叶子上首先出现黄色花叶。在植物进一步发育的过程中,该病会导致叶子坏死,并且更易受霜冻伤害。由于 HvEIF4E 基因的 rym4 和 rym5 等位基因变体,超过三分之二的欧洲冬大麦品种对 BaYMV 和 BaMMV 具有抗性。然而,几种 BaYMV 和 BaMMV 菌株已经克服了 rym4 和 rym5 介导的抗性。因此,大麦育种需要新的抗性等位基因。因此,我们在 BaMMV/BaYMV 易感冬大麦品种“Igri”中通过 Cas9 内切酶对 EIF4E 基因进行了定向诱变。产生了小插入,导致翻译阅读框发生移位,从而导致 EIF4E 功能丧失。突变发生在原代突变体中已经处于纯合状态。它们的后代被证明总是纯合的并且完全抵抗 BaMMV 的机械接种。EIF4E 敲除植物表现出正常的生长习性并产生谷物,但产量受损。
抗菌抗性是一种全球性的威胁。已经建立了管理运动,并实施了政策,以保护在人类,动物和植物中适当使用抗臭虫。对动物生产中使用抗菌剂的限制在全球议程上。生产商正在投资措施,涉及生物安全,遗传学,医疗保健,农场管理,动物福利和营养,以防止疾病并最大程度地减少抗菌药物的使用。幼小的动物(小猪,肉鸡和小牛)特别容易受到疾病和疾病的影响,因此,在这些动物上使用抗菌素的使用相对较高。促进动物健康的功能营养是减少动物生产中抗菌素需求的可用工具之一。营养会影响宿主防御和抗病性所需的关键功能。动物营养策略应旨在支持这些宿主防御系统,并降低潜在有害亚情况的饲料和水中存在的风险,例如霉菌毒素,抗营养因素以及致病细菌和其他微生物。促进胃肠道健康(GIT)健康的一般饮食措施包括,例如,饮食纤维的功能用途来刺激胃肠道分泌和运动性,降低蛋白质含量,以避免在后肠里发酵过多的蛋白质,并选择性地使用饲料添加剂和饲料成分的稳定性和饲料量的稳定性。此外,有机酸的使用可能有助于饲料和水安全。这种知识用于建立动物营养中的最佳实践,可以采用策略来减少对抗菌剂的需求并含有抗菌素耐药性。关键词:抗菌素耐药性,抗菌使用,抗菌剂,抗生素,肠道健康,动物生产,动物健康,饲料,饲料,饲料添加剂,动物营养
在断奶中,婴儿和幼小的动物易受严重的肠道感染,从而诱发肠道菌群营养不良,肠道插入和肠道屏障功能受损。果胶(PEC)是一种益生元多糖,增强了肠道健康,并可能对肠道疾病产生治疗作用。进行了一项21-D研究,以研究胸膜内注射大肠杆菌脂多糖(LPS)在小猪模型中诱导的肠道损伤的保护作用。总共将24个小猪(6.77±0.92 kg bw; duroc×landrace×大白色;巴罗斯; 21 d年龄)随机分为三组:对照组,LPS挑战组和PEC + LPS组。小猪。所有小猪被宰杀,并在D21给药3小时后收集肠样品。果胶的替代性改善了LPS诱导的洪水反应和对回肠形态的损害。同时,果胶还改善了肠粘蛋白屏障功能,增加了MUC2的mRNA表达,并改善了肠道粘液糖基化。lps挑战降低了肠道mi-crobiota的多样性,并丰富了螺旋杆菌的相对丰度。果胶恢复了α多样性,并通过富集抗炎性细菌和短链脂肪酸(SCFA)(SCFAS)的细菌来改善肠道菌群的结构,并提高了醋酸酯的浓度。©2022 Elsevier Inc.保留所有权利。此外,Spearman等级相关分析还揭示了肠道菌群与肠形态,肠内肿瘤和肠道糖基化的潜在关系。综上所述,这些结果表明果胶通过改变肠道菌群组成及其代谢产物来增强肠道完整性和屏障功能,这随后减轻了肠道损伤并最终改善了小猪的生长性能。
围产期中风是一种局部血管性脑损伤,导致数百万人终身残疾( Nelson ,2007; Dunbar 和 Kirton ,2019)。作为偏瘫性脑瘫的主要原因,且无法预防,当前的研究主要致力于了解和改善运动康复。偏瘫的严重程度在不同个体之间差异很大,有些儿童患肢和手的使用极其有限。因此,这些儿童除了参加适合其年龄的娱乐活动外,还可能在梳洗、洗澡和喂食等日常生活活动中遇到困难。遗憾的是,目前的治疗选择有限,但随着对生命初期单侧损伤后大脑发育方式的了解不断加深,治疗选择将越来越丰富。大量的临床前和人脑映射研究正在确定围产期中风后发生的发育可塑性(Kirton,2013b;Hilderley 等人,2019;Craig 等人,2021;Kirton 等人,2021)。在运动系统中,出生时等比例存在的双侧皮质脊髓束通常会在生命最初几年从同侧撤出(Eyre,2007)。然而,早期单侧损伤可能会损害对侧脊髓神经支配,导致同侧连接异常持续存在以及未受损半球对受影响肢体的运动控制异常(Staudt,2007;Kirton,2013a;Kirton 等人,2015)。不同的中风亚型代表了早期脑损伤后发育可塑性的人类模型(Kirton 和 DeVeber,2013 年)。人们对此类模型与现有的康复疗法之间的关系理解得越来越深刻。强制性运动疗法 (CIMT) 和双手疗法对某些人可能有效,但需要高剂量且效果不大(Novak 等人,2013 年)。模型还定义了非侵入性神经调节的目标,即未受损的初级运动皮层,对照临床试验表明该区域具有额外的疗效(Kirton 等人,2015 年;Hilderley 等人,2019 年)。目前尚无明确的围产期中风儿童神经可塑性模型,因为它与皮质运动意象和运动计划的重组有关。由于缺乏对早期受伤后幼小大脑如何重组的理解,在尝试将心理意象和意图作为康复模式的一部分时,带来了独特的挑战。功能性电刺激 (FES) 是一种新兴的康复选择,在偏瘫儿童中尚未得到充分研究。FES 是一种神经肌肉电刺激 (NMES),它将患者的运动尝试与通过低强度电流刺激目标肌肉相结合,以促进受损功能性运动的重复。患者的自愿努力是 FES 的重要组成部分,其中感觉运动区域的皮质激活与功能改善有关(Eraifej 等人,2017 年;Musselman 等人,2020 年)。成人 FES 已证明中风后偏瘫的上肢功能改善和神经可塑性变化,包括日常生活活动 (ADL) 的改善,并被当前最佳中风康复实践指南推荐(Eraifej 等人,2017 年;Musselman 等人,2020 年)。对偏瘫性 CP 儿童进行的小规模研究表明,将 FES 与治疗相结合可改善手部功能,并伴随皮质神经生理学的变化(Wright 和 Granat,2000 年;