图 B.3.9 焊缝处残余应力的典型分布 B-65 图 B.3.10 三种开裂模式 B-66 图 B.3.11 裂纹尖端附近的弹性应力场分布 B-67 图 B.3.12 评估应力强度因子的参数定义 B-69 图 B.3.13 应力分布的线性化 B-75 图 B.3.14 折叠节点等参裂纹尖端单元 B-76 图 B.3.15 边缘裂纹板的 2-D 裂纹模型示例 B-76 图 B.3.16 半椭圆表面裂纹的 3-D 裂纹网格示例 B-77 图 B.4.1(a) 根据相对于 CVN 转变温度的设计温差估算设计温度下的 K mat B-85
在约半尺寸焊接加固板上进行循环拉伸疲劳试验,以研究大裂纹与加固板相互作用时的扩展情况。使用线性弹性断裂力学分析来模拟裂纹扩展,并与实验结果合理一致。应力强度因子 (∆ K) 的范围是通过有限元分析或裂纹长度增量的分析模型确定的。模型包括与测量的残余应力相似的理想残余应力分布。使用具有上限系数的巴黎定律估计裂纹扩展速率与 ∆ K 的关系。预测增长率对残余应力和巴黎定律系数最为敏感。实验和分析表明对加固板类型的敏感性很小。本项目开发的模型易于复制,可用于评估存在较大裂纹的船舶的剩余寿命,从而更准确地评估安全性并更有效地安排维修。
4.3 应变流中胶囊周围的速度场和压力云图(Re = 160,Ac = 0.1)。使用 p(J,' 标准化压力。4.4 胶囊膜表面的压力和剪切应力分布(使用 pU,' 标准化)(Re = 160,Ac = 0.1)。4.5 胶囊膜中的轴向、环向和冯·米塞斯张力(Re = 160,Ac = 0.1)。4.6 临界韦伯数对雷诺数和加速度数的依赖性。4.1 临界韦伯数对可行均质机操作线雷诺数的依赖性。4.8 操作压力和细胞直径对球形细胞内产生的最大张力的影响。4.9 修正临界韦伯数对修正雷诺数和加速度数的依赖性。
摘要本文分析了在机器人臂中使用的三种材料的机械行为:尼龙,PLA和ABS,重点是三个重要参数:在不同加载条件下的总变形和等效应力。在这方面,通过ANSYS软件进行了有限元分析,以模拟结构刚度,以及它们抵抗用钢加固增强时这些材料会产生的压力的阻力。调查表明,与PLA和ABS相比,尼龙的性能,尤其是在用钢增强的情况下,就可变形性和在应力分布中扩散而言。因此,它更适用于应用负载时包括更高耐久性以及最小变形的应用程序。一般设计和分析应表明在工业和教育机构中使用的小规模机器人武器的设计中有一些有价值的见解。关键字:ABS,ANSYS,等效压力,FEA,材料性能,尼龙,PLA,机器人臂,钢筋,钢筋,总变形简介
摘要:随着社会经济的发展,机械工程、航空航天等行业对能够高效利用金属材料并获得良好性能的表面处理技术的需求日益增加。激光金属沉积(LMD)熔覆技术因其稀释率较低、热影响区较小、涂层与基体之间冶金结合良好等特点成为近年来的研究热点。本文综述了LMD技术中与缺陷形成直接相关的熔池晶粒生长机制、温度和应力分布的模拟技术,同时介绍了LMD技术中缺陷的抑制方法和熔覆层性能的提升方法。最后指出根据所需性能主动选择材料,结合可控加工工艺,形成相应的组织结构,最终主动实现预期功能,是LMD技术未来的发展方向。
本研究使用有限元分析 (FEA) 对涡轮叶片进行全面的热分析和静态分析,以评估两种先进材料的性能:钛合金 (Ti-6Al-4V) 和 Inconel 625。涡轮叶片使用 SolidWorks 建模,并在典型操作条件下使用 ANSYS 进行分析,以评估应力分布、变形、温度梯度和热通量等参数。钛合金 (Ti-6Al-4V) 以其重量轻和出色的强度重量比而闻名,使其成为需要减轻质量的应用的理想选择。相比之下,镍基超级合金 Inconel 625 具有出色的热稳定性、抗氧化性和高温下出色的机械性能。结果强调了这些材料之间的权衡:钛合金在中等温度下表现出更轻的重量和良好的机械性能,而 Inconel 625 在高温环境中表现出色,具有更好的抗热应力和变形能力。这项比较研究为涡轮叶片的材料选择提供了宝贵的见解,从而优化了其在高应力、高温应用中的性能和耐用性。
增材搅拌摩擦沉积 (AFSD) 是一种新兴的固态增材制造技术,其中材料逐层沉积。与基于熔合的增材制造工艺不同,AFSD 依靠旋转工具通过摩擦热和压力挤压和粘合原料材料,使材料温度低于其熔点,以消除与熔合相关的缺陷。由于其高沉积速率,它适用于大型结构制造。然而,AFSD 仍处于开发阶段,存在关于沿构建高度的硬度变化、缺陷形成和残余应力分布的问题。在本研究中,使用光学显微镜、维氏硬度测试和中子衍射检查了 AFSD 制造的结构。光学显微镜显示第一层和基材界面以及沉积边缘存在缺陷,而硬度测试表明沉积硬度从最后一层到第一层降低。中子衍射显示基材熔合区附近存在拉伸残余应力,而大多数沉积物中存在压缩残余应力。
由于复杂性、工艺能力和对技术工人健康状况的影响,专用飞机部件的夹具设计如今非常具有挑战性。建议的用于钻外蒙皮飞机门的夹具设计将适应夹具设计原则和技术工人的人体工程学方面。建议的设计将包括舒适的钻孔姿势和结构有限元分析 (FEA)。讨论了钻孔过程所需的步骤,从加载、定位、夹紧、框架旋转到钻孔。FEA 分析表明,在框架和垂直支架之间的凸缘处记录的 von Mises 应力最大值为 6.373 × 105 N/m 2,并且外蒙皮飞机门的负载重量导致应力分布可接受。开发了一个功能齐全的原型,其比例缩小到四分之一以验证设计。开发的原型成功展示了夹具设计在钻飞机门外蒙皮时提供人体工程学考虑机制的能力。
(a)共焦拉曼成像与150 mm SIC晶圆的散装区域(红色)相比,具有不同掺杂浓度(蓝色)的晶体面区域。颜色和识别基于(b)中给出的拉曼光谱的分析。(b)两个确定成分的拉曼光谱。它们在掺杂敏感的A 1(LO)模式(约C.990 cm -1相对波数)。(c)SIC晶圆中应力敏感E 2(高)峰(776 cm -1)的颜色编码位置。图像揭示了压缩应力引起的晶圆中心的峰值变化,拉伸应力向其边缘移动。第二刻度给出了MPA中计算出的应力值。零应力值是由应力分布的平均值定义的。(d)基于E 2(高)峰的FWHM的SIC结晶度。晶圆显示了其晶体区域的晶体结构的微小变化。(e)SIC晶片的翘曲,高度变化高达40μm。
原位应力显着影响岩石爆炸损伤,但对受限制压力影响的岩石的损伤演变的定量评估很少。本文通过理论分析和数值模拟分析了包膜压力对爆炸诱导的岩石损伤的影响。使用图像处理技术处理从数值模拟获得的损坏云。提出了损坏变化(η)的概念,以促进图像处理结果的呈现。发现损伤变量与近端的原位应力场同时与静液压压力(P X)呈负相关。相反,在各向异性的原位应力场中,由于岩石中存在箍拉伸应力,η与P X无负相关。建立了肩部和各向异性应力场中η和p x之间的数学关系。引入了各向异性损伤变量(ηk),以描述各向异性比率(K)对岩石损伤的影响,发现随着K值的增加而增加。在静态载荷下的岩石应力分布状态来解释k的急剧增加等于4和5。本研究提供了对原位应力对岩石爆炸损伤的影响的见解,并提出了分析和呈现数据的新方法。