因此,鉴于这一需求,本论文研究的重点是创建一种方法,用于预测受到平面内和平面外载荷的凸耳接头的疲劳寿命。这项研究是与 GKN Fokker Aerostructures 合作进行的。当前的疲劳预测方法都是基于轴向载荷的凸耳。从概念上讲,这种方法应用了 Larsson 关系,该关系通过某些校正系数将任意凸耳的标称应力与参考凸耳联系起来。然后将凸耳的标称应力应用于 S-N 曲线,从而得出失效前的循环数(疲劳寿命)。Fokker 在其技术手册 3(TH3)中描述了这种方法。然而,Larsson 和 TH3 都没有考虑斜向和/或平面外载荷的凸耳来预测疲劳寿命。已经对斜向载荷的凸耳进行了一些研究,但这些研究的主要重点是峰值应力位置和应力集中因子 (SCF) 的计算。在公开报告的研究中没有发现关于平面外负载凸耳的信息。
本研究探讨了通过高功率和高速激光表面改性 (LSM) 制造 Ti6Al4V 功能梯度材料。原始样品微观结构由细长的等轴 α 相和 β 相晶界组成。对这些样品应用了九种不同的 LSM 工艺参数集。扫描电子显微镜显示,在所有情况下,激光处理样品的表面附近都有细小的针状马氏体相。观察到马氏体区下方的过渡微观结构区,其中有较大的等轴晶粒和一些马氏体 α 相生长。样品内部包含原始微观结构。发现在所有工艺参数集下进行表面改性后,表面粗糙度都会增加。进行了纳米压痕测试,以获得三相(即马氏体 α、等轴 α 和晶界 β)的硬度和模量。开发了双相晶体塑性有限元模型来研究单轴拉伸载荷下的三区功能梯度微观结构。硬化表面区域阻止了连续滑移带的扩展,而过渡区则阻止了样品外表面和内部之间过大的应力集中。
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
长期植入的神经微电极是神经科学研究和新兴临床应用的有力工具,但由于它们在体内数月后容易失效,因此其实用性受到限制。一种失效模式是保护导电迹线免受盐水环境影响的绝缘材料的降解。研究表明,机械应力会加速材料降解,而机械应力往往集中在凸起的地形上,例如导电迹线。因此,为了避免凸起的地形,我们开发了一种制造技术,将迹线凹进(埋入)干蚀刻、自对准沟槽中。沟槽的深度和迹线的厚度相匹配,以使上覆的绝缘材料平坦,根据有限元建模,这可以降低绝缘材料中的应力集中。在这里,我们详细介绍了工艺优化、固有应力建模以及使用 SEM、聚焦离子束横截面、轮廓测量和电化学阻抗测试进行表征。该技术不需要额外的掩模,易于与现有工艺集成,并产生约 10 纳米内的平整度。
随着柔性电子产品和绿色汽车的快速普及,合理设计和轻松构建具有优异机械性能和高电化学性能的定制功能材料至关重要。在此,通过利用数字光处理(DLP)和化学气相沉积(CVD)两种现代工业技术,展示了一种独特的3D空心石墨泡沫(HGF),其表现出周期性的多孔结构和坚固的机械性能。有限元分析(FEA)结果证实,合理设计的螺旋状多孔结构提供了均匀的应力区域并减轻了由应力集中引起的潜在结构故障。典型的HGF在48.2 mg cm -3的低密度下可以显示出3.18 MPa的高杨氏模量。多孔 HGF 进一步被活性 MnO 2 材料覆盖,质量负载高达 28.2 mg cm -2 (141 mg cm -3 ),MnO 2 /HGF 电极仍可实现令人满意的 260 F g -1 比电容,对应的面积电容为 7.35 F cm -2 ,体积电容为 36.75 F cm -3 。此外,组装的准固态非对称超级电容器还表现出优异的机械性能和电化学性能。
界面系统(NFIS)用于预测航空工业铝部件的残余应力 [5]。Chukwujekwu 等人使用有限元分析预测了 6Al-4V 钛基工件的残余应力 [6]。Meyghani 等人对基于 ABAQUS、ANSYS 和 FLUENT 的搅拌摩擦焊接模拟结果进行了比较研究 [7]。Kortabarri 等人比较了 Inconel 718 基工件的应力集中 [8]。Mukherjee 等人发现可以通过减小 AM 过程中基材层的厚度来控制应力 [9]。Huang 等人提出了一种预测正交切割过程中残余应力的模型 [10]。Yang 等人研究了激光床熔合过程中产生的残余应力 [11]。在分析残余应力水平时,考虑材料的热性能和机械性能非常重要。Megahed 等人展示了气泡在镍基高温合金中滞留的影响,如图 1 所示 [12]。制造工艺有多种方法,必须找到对产品影响最小的最佳方法,以降低热残余应力。因此,本研究的重点是确定预测 AM 中残余应力的最佳方法。
3.6.2 裂纹扩展................................................................................................................59 3.6.3 临界裂纹长度或失效...............................................................................................61 3.7 安全寿命和故障安全定义及设计理念........................................................................62 3.7.1 安全寿命设计.............................................................................................................63 3.7.2 故障安全设计和损伤容限分析.........................................................................................64 3.7.2.1 安全寿命和故障安全设计的简要示例.........................................................................64 3.8 焊接和裂纹起始点的介绍....................................................................................................66 3.8.1 残余应力.............................................................................................................................67 3.8.2 焊接缺陷.............................................................................................................................68 3.8.3 应力集中.............................................................................................................................68 3.8.4 钢和合金中的裂纹起始点....................................................................................................69铝................................................................................69 3.8.5 铝制零件的补焊....................................................................................70 3.9 高速船用新型铝合金及焊接技术........................................................70 3.9.1 新型海洋级铝合金,牌号 5383.........................................................................70 3.9.1.1 5383 的疲劳强度.........................................................................................................72 3.9.2 新型海洋级铝合金,牌号 RA7108.........................................................................74 3.9.3 新型海洋级铝合金 5059.........................................................................................76 3.9.4 搅拌摩擦焊接.........................................................................................................77 3.10 参考文献.........................................................................................................................79 4.DNV 和其他行业疲劳分析标准.........................................................................................115 5.1 DNV 高速船疲劳分析分类说明 30.9 ................................116 5.2 协助船舶设计师的其他行业标准.....................................................118高速铝船的疲劳设计................................................................................................................81 4.1 Palmgren-Miner 累积损伤疲劳评估....................................................................................82 4.2 确定要分析的细节................................................................................................................84 4.3 加载历史的开发................................................................................................................86 4.3.1 船长和速度对高速船加载历史的影响.......................................................................87 4.3.2 用于船舶加载历史的概率分布....................................................................................89 4.3.3 雨流和储层循环计数法....................................................................................................90 4.3.4 雨流循环计数法.............................................................................................................91 4.3.5 储层循环计数法.............................................................................................................91 4.4 应力直方图的开发.....................................................................................................................92 4.4.1 使用频谱分析方法开发应力直方图.....................................................................................93 4.5 应力计算和应力集中................................................................................................95 4.5.1 行业规范中的设计应力...............................................................................................95 4.5.2 关于应力的进一步讨论..............................................................................................96 4.5.2.1 结构中的名义应力.........................................................................................................97 4.5.2.2 结构应力.........................................................................................................................98 4.5.2.3 热点应力.........................................................................................................................100 4.5.2.4 缺口应力.........................................................................................................................100 4.5.2.5 焊接对应力的影响....................................................................................................101 4.5.2.6 制造缺陷及其对名义应力的影响....................................................................................102 4.6 确定适当的 S/N 曲线.....................................................................................................103 4.6.1 程序.....................................................................................................................104 4.7替代应力直方图方法................................................................................................112 4.8 参考文献....................................................................................................................113 5.
摘要:对 AISI-SAE AA7075-T6 铝合金进行了超声波和常规疲劳试验,以评估人工和诱导预腐蚀的效果。人工预腐蚀是通过在试样颈部沿试验试样的纵向或横向加工两个直径为 500 µ m 的半球形点蚀孔获得的。诱导预腐蚀是使用欧洲航天局的国际标准 ESA ECSS-Q-ST-70-37C 实现的。试样采用频率为 20 kHz 的超声波疲劳技术进行测试,采用频率为 20 Hz 的常规疲劳进行测试。两个施加的载荷比为:超声波疲劳试验中 R = − 1,常规疲劳试验中 R = 0.1。主要结果为人工和诱导预腐蚀对疲劳耐久性的影响,以及常规疲劳试验后的表面粗糙度变化。分析了裂纹萌生和扩展,并建立了数值模型来研究与预腐蚀坑相关的应力集中,以及从裂纹萌生到断裂的 I 型应力强度因子的评估。最后,获得了基材和横向有两个半球形坑的试样的应力强度因子范围阈值 ∆ K TH。
增材制造已成为全球经济的重要组成部分,它彻底改变了制造工艺、增强了机械部件并解决了提高生产率等当前行业挑战。本研究探讨了 3D 打印 Onyx 的抗拉强度和刚度,重点研究了打印周边层的影响。结果表明,增加周边层可通过加厚外壁和改善应力分布来提高抗拉强度。实验表明,2 到 15 层之间的改进不超过 20%,并且周边层对韧性没有影响。此外,一旦有足够的周边层,内部填充模式和密度会在整体强度中发挥更重要的作用。两层通常足以确保凝聚力、最大限度地减少变形并防止微裂纹扩展。Onyx 的尼龙基质和碳纤维通过缓解周边层和内层之间的过渡区的应力集中进一步提高了耐久性。然而,超过某一点后,增加层数带来的收益就会递减,主要是增加材料消耗,而强度却没有显著提高。这些发现支持未来研究剪切强度和抗冲击性等附加性能,同时平衡性能、材料使用和可持续性。
摘要:激光增材制造(LBAM)是一组用于生产金属部件和功能分级产品的先进制造工艺。LBAM的生产要么局限于通过激光金属沉积在基体上形成薄或厚的涂层,要么局限于通过选择性激光熔化生产具有完整功能的金属产品。在每种情况下,LBAM制造的部件都需要对工艺参数进行优化,以避免出现孔隙、裂纹、热变形和机械强度等缺陷。激光扫描路径规划作为激光增材制造(LAM)过程中的关键环节,是平衡成形件温度场、避免应力集中、防止变形和开裂的有效策略。高效、准确、合理的激光扫描路径规划对于提高工艺数据的处理效率、延长激光扫描系统的寿命、提高试件的成形质量具有重要意义。通过大量研究发现,激光的扫描模式对成形过程中的力学性能和热失配引起的变形有显著的影响。因此,深入了解 LBAM 中的路径规划至关重要。我们的综述主要关注扫描模式对 LBAM 中变形、温度和机械性能的影响。最后,我们的论文讨论了当前研究的局限性以及 LAM 技术的一些未来研究。© 2021 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1 .OE.60.7.070901]