一种最为突出的应用方法是使用 Modelica 等语言通过微分代数方程系统对流体系统进行面向对象建模。例如,上文应用领域的所有参考文献均指 Modelica 实现,图 1 展示了作为飞机气候系统一部分的空气循环的 Modelica 模型图。Modelica 是一种开放且免费的建模语言 [5],得到各种商业和免费工具的支持。此外,还有免费的 Modelica 标准库支持不同应用领域的通用物理建模基础:支持各种流体热力学性质模型的媒体库 [6] 和具有通用接口 [8] 的标准流体库 [7],用于对流经体积元和系统边界之间各种组件的流体流进行建模。
近年来,人们广泛研究了陶瓷制造过程中某些废料的回收利用,以从经济上证明与陶瓷制造相关的高昂成本是合理的,并避免这些废物被填埋[1-5]。多孔陶瓷具有许多应用领域,包括催化剂载体、熔融金属过滤器、高温隔热材料、电化学反应器中的隔板、生物反应器和骨组织工程、轻质夹层结构、水净化微孔膜和废水处理。此外,多孔陶瓷预制件还用于制备陶瓷-聚合物和陶瓷-金属复合材料[6]。陶瓷在许多应用领域的性能优于聚合物和金属竞争对手,因为它们的密度相对较低,这意味着重量轻、耐腐蚀(包括热腐蚀液体和气体)、热稳定性、化学惰性和
硕士为学生提供了一种教育,该教育为他们提供了高级知识水平,尤其是在生物学和生物医学科学的应用领域,并帮助他们发展关键和独立的推理能力。
表 1:量子算法的潜在应用领域概述,以及相关物理目标量、底层理论基础和一些与之竞争的传统算法的信息。文中给出了首字母缩略词的介绍和解释。
UCP 正在与其他用户社区、行业、服务提供商和研发部门合作,汇集不同应用领域的专业知识和见解,分享经验,并通过鼓励跨学科合作来加强欧盟创新者网络
机器人与人工智能专业为学生提供机器人与人工智能领域的知识和技能。该专业旨在使毕业生能够独立完成该领域的复杂任务,为他们进一步学习或在相关行业获得成功的职业生涯做好准备。机器人与人工智能的应用领域多种多样,在某些情况下,发展迅速。从制造业中的协作轻型机器人、医学中的介入或诊断机器人,到农业或太空旅行中的无人机,传统机器人技术与现代人工智能方法的结合不仅可以实现更高效的流程,而且还可以在所有经济部门创造出全新的应用领域。为了让毕业生积极塑造这种动态环境,该专业将教授物理、电气工程、计算机科学、数学和机器人技术的必要原理,以及人工智能的基础知识和人工智能在机器人技术中的应用。
地理空间信息通过提供早期预警信号和提供运营见解,已经证明了其至关重要性。在本文中,我们将介绍另一个应用领域,即收集地理空间信息以用于综合培训和模拟解决方案。政府(即情报界)和商业地理空间数据提供商(例如 Maxar Technologies)为所选的感兴趣区域提供了大量接近实时的数据。例如,如果需要,Maxar 的卫星群每天可以提供多个重访周期。生成的大量地理空间数据是现代大数据分析的典型应用领域,由先进的机器学习模型支持。考虑到这些技术进步,我们将提供一个端到端地理空间平台来消化和分析捕获的数据(例如,通过无人机或卫星)并输出 3D 环境,从而为关键任务规划和培训提供下一代建模和仿真 (M&S) 解决方案。
摘要区块链和其他分布式账本技术引发了广泛的研究和兴趣。这是因为它们能够在利用非对称加密、数字签名和哈希函数的同时在各个应用领域创建冗余、透明和可靠的连接。然而,当前的区块链系统容易受到攻击,尤其是那些利用 Grover 和 Shor 算法的量子计算机进行和实现的攻击。有必要研究数字签名的各种算法、后量子代公钥加密及其性能,以深入了解解决该问题的最合适方法。在我们的评论中,我们研究了区块链中不同后量子公钥生成和数字签名算法的性能,并提供了计算时间和内存使用量的性能比较。这里介绍的研究包括可以使用后量子区块链的应用领域。