清洁产品最终进入废水处理厂的流出物(Tanabe 和 Kawata 2008)。由于它不易被生物降解、吸附或被传统氧化剂氧化,因此很难处理(Otto 和 Nagaraja 2007)。高级氧化工艺(AOP)通常用于去除 1,4-二氧六环(Otto 和 Nagaraja 2007;McElroy 等人 2019)。在这些过程中,会原位生成强氧化羟基自由基(·OH)来降解污染物。这些技术包括紫外高级氧化(UVAOP),其中紫外光用于将过氧化氢(H 2 O 2 )光解为·OH。同样,紫外氯 AOP 通过光解游离氯生成·OH。臭氧 (O3) 可用作水和废水处理中的氧化剂和消毒剂,通过其自催化分解和与有机物的反应生成·OH,而有机物也可以被 H2O2 催化 (von Sonntag & von Gunten 2012;Stefan 2018)。在这些过程中,通常需要大量的化学药剂。虽然对 AOP 在废水废水中去除 1,4-二氧六环的研究有限,但臭氧通常被认为是废水废水中最好的 AOP。这是因为高含量的溶解有机物可以清除羟基自由基,而且紫外线的透射率低 (Katsoyiannis 等人 2011;Lee 等人 2016;Sgroi 等人 2021)。然而,如果存在溴化物 (Br),臭氧 (和 UV-Cl 2 ) 可以形成溴酸盐,这是一种受监管的消毒副产物。电子束处理使用加速电子通过水的辐射分解产生大量的氧化和还原自由基,如公式 (1) 所示 ( Cooper 等人 1992 年; Wang 等人 2016 年):
摘要 水中新兴污染物的增多对科学界和水处理利益相关者提出了挑战,要求他们设计出简单、实用、廉价、有效且环保的修复技术。新兴污染物包括抗生素、激素、非法药物、内分泌干扰物、化妆品、个人护理产品、杀虫剂、表面活性剂、工业产品、微塑料、纳米颗粒和纳米材料。去除这些污染物并不容易,因为传统的废水处理系统并非为处理新兴污染物而设计的,而且污染物通常以痕量形式存在于复杂的有机矿物混合物中。在这里,我们回顾了去除废水中新兴污染物的先进处理方法,重点关注使用非常规吸附剂(如环糊精聚合物、金属有机骨架、分子印迹聚合物、壳聚糖和纳米纤维素)的吸附导向工艺。我们描述了用于降解和去除新兴污染物的生物技术。然后,我们提出高级氧化过程由于其简单性和效率而作为最有前景的策略。
为了确定最终的处理量,对一周内每天运送垃圾到处理场的所有车辆进行了调查。垃圾按体积估算,然后换算成重量。调查项目包括 (i) 车辆类型、(ii) 车辆上的容器类型、(iii) 收集类型(公共收集、家庭或企业直接运输)和 (iv) 垃圾类型(家庭、商业、绿色、大件等)。结果如图 3 所示。波纳佩垃圾填埋场的平均垃圾量为每天 22.9 吨,而平均每天有 140 辆车辆进入。在处理量中,54.2% 由居民、商店和其他此类来源直接运输,26.6% 由当地政府收集,19.2% 由私人企业运营商波纳佩废物管理服务收集。垃圾填埋场处理的家庭垃圾比例约为 30%,商业垃圾和公共垃圾等其他垃圾的比例约为 70%。
废水包含许多不同的ARG与来自人类,病毒和细菌在内的各种来源的遗传物质混合在一起。因为ARG仅占总DNA含量的很小比例,因此在废水样品中发现它们需要敏感的检测方法。最常见的技术是定量聚合酶链反应(QPCR)。此方法使用称为引物的RNA指南来识别已知ARG的特定DNA序列,然后将其放大以进行检测。
中国是全球最大的碳排放国和能源消费国,实现供暖行业脱碳是实现中国雄心勃勃的“双碳”目标的关键要素之一。目前,区域供热 (DH) 系统已覆盖中国北方约 88% 的城市供热区域。尽管如此,中国约 90% 的供暖需求仍然依赖于化石燃料。将可再生能源和废热源更大规模地整合到 DH 系统中对于实现中国整个供暖行业的脱碳至关重要。然而,要充分发挥其潜力,需要更深层次的理解。本文对中国 DH 系统中可再生能源和废热回收的现状、潜力和国家政策方案进行了深入研究。结合对国内外相关领域近期文献的批判性回顾,从科学研究和实际实施的角度讨论了趋势、挑战和未来前景。本文强调了区域供热中可再生能源和废热源的整合的协同作用、能源效率的提高以及通过实施第四代区域供热和智能能源系统使用热存储技术,从而提供更经济可行的前进道路。
2018 年,明尼苏达国民警卫队还支持了针对飓风弗洛伦斯和飓风迈克尔的国内响应行动。一架 CH-47 支奴干直升机和五名机组人员在北卡罗来纳州执行了八次任务,运送人员和设备以支持 9 月份的飓风弗洛伦斯响应工作。此外,明尼苏达国民警卫队从位于里普利营的医疗仓库向北卡罗来纳州陆军国民警卫队发送了价值超过 36,428 美元的医疗用品,用于响应工作。10 月,明尼苏达国民警卫队派遣一架 CH-47 支奴干直升机和六名机组人员前往佛罗里达州协助应对飓风迈克尔。
一吨重的大梁比一吨重的混合支架更容易重复使用。大型部件比小型部件更容易重复使用,标准部件比专用部件更容易重复使用。重复使用是否适用于由许多小型和专用部件组装而成的车辆或耐用消费品?我们的范围界定研究未发现小规模消费后废料重复使用的例子。图表左下角的唯一重复使用示例涉及制造废料。减少复杂产品金属废料产生的关键是更长时间地维护和升级它们。这已经发生在一些工业设备上——过去 100 年制造的许多轧机今天仍在运行,捷豹路虎估计,有史以来制造的路虎卫士中有多达三分之二今天仍在路上行驶 11 。重复使用和寿命延长范围与产品转售活动重叠。因此,本报告未进一步探讨此页面图表顶部的许多示例。未来的 WellMet2050 主题将研究耐久产品的设计要求和商业案例。
采用一锅法,在水溶液中使用两亲性嵌段共聚物合成氧化镍 (NiO) 纳米花。Pluronics F-127 嵌段共聚物在 NiO 纳米花的形成过程中起结构导向剂的作用。沉淀剂的受控水解缓慢释放出氨,氨可形成 Ni(OH) 2,后者在聚合物溶液中稳定下来。煅烧去除了纳米复合材料的聚合物部分,并将 Ni(OH) 2 转化为具有面心立方 (FCC) 相的 NiO。合成的 NiO 纳米花具有介孔结构,平均表面积为 154 m 2 /g。带负电荷的刚果红 (CR) 和带正电荷的 NiO 纳米花之间的物理吸附和静电相互作用使得 CR 染料能够在环境条件下吸附。染料的吸附遵循拟二级动力学,吸附剂通过煅烧再生,并以相似的效率循环三次。由 Elsevier BV 出版
化学物质和样品:目标分析物列表包括105种药物和3种替代物质内部标准。单个纯标准标准以制备甲醇中的库存溶液,从中校准标准(5-1000 ng/l)在milliq水中制备以进行半定量。的进水废水样品作为24小时复合材料。收集后,将1 L等分试样的复合废水转移到冷藏玻璃瓶中,并存储在-20°C下直至分析。样品制备:将100 mL废水样品以4000 rpm离心5分钟,并通过0.22 µm滤波器进行真空过滤。将30 ml等分试样的过滤废水施加了位替型内部标准,并使用Oasis HLB SPE墨盒提取(200 mg,6 cm 3,Waters,Waters,Milford,MA)。将每个墨盒用5 ml甲醇和5 ml的Milliq水预先加载,然后再加载样品,然后用真空干燥并用10 mL甲醇洗脱。蒸发干燥后,将残留物用50 µL甲醇重构进行LC-MS/MS分析。尖刺的Milliq水,以半定量检测限制(LOD)和提取回收率进行半定量评估。色谱法:使用现象Kinetex C18柱(100 x 2.1 mm,1.7 µm,p/n:00d-4475-an)在Sciex eotlc AC系统上进行LC分离。使用0.5 mL/min的流速,使用注射体积为5 µL,柱温度为45°C。所使用的LC条件如表1所示。表2显示了用于质谱仪的方法参数。质谱法:使用X500R QTOF系统以正面和负电喷雾电离模式进行分析。Swath DIA方法由16个可变窗户组成,覆盖M/Z 130–520的质量范围。