自最初污染以来,这三个地点的情况都发生了变化。受影响最严重的是马绍尔群岛的环境和居民,而美国能源部 (DOE) 对此负有持续责任。具体来说: • 格陵兰。在世纪营,丹麦设立了永久性冰盖监测系统,以解决气候变化可能释放污染的担忧。然而,2021 年的一项研究报告称,污染很可能会在 2100 年之前保持不变。• 西班牙。在帕洛马雷斯,西班牙官员在 1990 年代重新评估了放射性污染,发现其超过了欧盟标准。2015 年,美国和西班牙当局签署了一份进一步修复帕洛马雷斯的意向声明,但尚未达成最终协议。• 马绍尔群岛。在马绍尔群岛,人们担心气候变化会引起放射性污染,对淡水和食物来源构成风险。美国能源部评估马绍尔群岛的人类辐射暴露情况,并监测环境污染情况。美国能源部认为人类健康风险较低,但马绍尔群岛官员认为美国能源部淡化了风险。这一分歧和其他分歧加剧了人们对美国能源部信息的不信任。通过在马绍尔群岛实施可持续沟通战略,美国能源部可以改善马绍尔群岛人民在环境条件变化时获取污染信息的渠道和信任度。
为确保长期安全和性能,地质核废料处置库需要低渗透性屏障,如膨润土缓冲层和/或页岩围岩。页岩不仅渗透性低,而且容易发生随时间变化的变形(即蠕变),从而修复损伤,但页岩蠕变对核废料处置库长期性能的影响尚不清楚。特别是,页岩的各向异性(即层理)可能对其蠕变行为产生重大影响,从而影响核废料处置库的长期性能。在本研究中,进行了数值模拟,目的是展示各向异性页岩蠕变对页岩中通用地质核废料处置库的应力和渗透性演变的影响。模拟中使用了 TOUGH-FLAC 模拟器,这是一种热-水力 (THM) 耦合数值代码。为实现该目标,对各向异性页岩蠕变模拟结果与不同模拟工况(无蠕变(即弹性蠕变)、各向同性蠕变和长期蠕变页岩工况)的结果进行了比较。比较结果表明,弹性和各向同性蠕变页岩工况分别导致对处置库应力和渗透率的估计过高和低估,而长期蠕变页岩工况后期积累的蠕变大于前期,有助于在保持压缩球应力的同时抑制较大的剪应力和拉应力的形成,从而导致渗透率水平持续较低。这些结果表明,使用弹性和各向同性蠕变形成模型进行性能评估将提供应力和渗透率的上限和下限估计,而各向异性蠕变形成模型将给出更合理的估计,具有长期蠕变特性的页岩将对核废料处置库的安全性和性能的许多方面有益。
Aquanty专门研究预测分析,仿真和预测以及研究服务。我们的技术和服务在全球范围内部署在包括:农业,石油和天然气,采矿,流域管理,污染物修复以及核存储和处置。Aquanty的科学家被认为是综合气候,地下水和地表水建模领域的领先国际专家。我们的使命是提供全面的水资源和气候解决方案,以支持在迅速变化的世界中为客户做出明智的决策。
在制药行业中发现药物到营销潜在药物的旅程是一个多方面的过程,需要大量投资并包括各个阶段。在此过程中的一个关键步骤称为HIT鉴定阳离子,其中涉及从大量化合物中识别可以与特定C靶标结合的小分子并引起所需的生物学效应,例如抑制疾病引起蛋白质的活性。1 - 4有几种传统的识别方法,5 - 8,但是DNA编码的图书馆(DEL)筛选技术在近年来在学术和制药行业环境中引起了人们的关注。9 - 14该技术涉及编码具有独特DNA标签的许多小分子并将其暴露于靶蛋白上,从而识别出通过测序其DNA标签选择性结合与蛋白质的分子的鉴定(图1)。
随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。 在注射之前,添加O 2以消除Suldes。 在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。 此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。 模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。 我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。在注射之前,添加O 2以消除Suldes。在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。
• 政府应毫不拖延地批准 2023 年国家计划,该计划包括将地质处置作为乏燃料和高放射性废物的最终目的地。 • 政府应确保近地表处置设施关闭授权程序要求更新安全报告作为申请的一部分。 • 政府应编制和发布与国家计划中定义的活动明确相关的研发计划。 • ISIN 应实施自己的研发计划,以建立其专业知识来审查国家计划中活动的安全案例。 • 政府应审查和修改国家计划实施时间表(如有必要),并确认其切实可行。 • 政府应采取措施,确保对国家储存库安全案例和安全评估的准备和审查施加的时间限制不会损害安全性。 • 政府应确保改进与国家计划中所有活动相关的成本估算,同时考虑以下因素:
本研究包含 NRC 工作人员对美国退役电厂乏燃料池潜在事故风险的评估结果。本研究旨在为永久关闭核电站的退役规则制定提供技术基础。本研究描述了典型退役电厂的建模方法,包括设计假设和行业承诺;为评估退役电厂乏燃料池中储存的乏燃料的行为而进行的热工水力分析;乏燃料池事故的风险评估;后果计算;以及敏感性研究和对退役监管要求的影响。本研究的初稿于 1999 年 6 月和 2000 年 2 月发布,征求公众意见和技术审查。在准备本研究时,已考虑了相关利益相关者、反应堆保障咨询委员会和其他技术审查人员的意见。爱达荷国家工程与环境实验室还进行了广泛的质量审查,一组人为可靠性分析专家评估了报告的假设、方法和建模。本研究草案的公众意见将在本 NUREG 附录 6 中讨论。
在撰写本企业战略时,英国管理放射性物质和核退役政策的政策框架正在接受审查和公众咨询。此次更新旨在将自 1995 年以来的变化整合到一个英国范围内的政策框架中,为使用放射性物质的人和负责退役和管理放射性废物的人提供更明确、更一致的指导。这包括有关英格兰和威尔士近地表处置的新提案以及放射性废物管理的风险知情方法。近地表处置已成为苏格兰政府高活度废物政策的一部分。此次更新还包括将废物管理规划中新核电建设目标的规模从 16 GWe 改为 24 GWe。英国核能部门的成立也已宣布,该部门将引领未来的清洁核能。
本研究旨在利用工业废料,如发泡聚苯乙烯包装废料 (EPS) 和废旧轮胎废料,生产出一种新的复合材料。新型复合材料 RTPC(橡胶轮胎聚苯乙烯复合材料)是废旧轮胎中的橡胶颗粒作为增强材料,以及通过回收 EPS 和汽油获得的基质的混合物。在本研究中,考虑了几种基质/增强材料重量比例(25%、30% 和 35%)和几种增强材料粒度(2-3、3-4 和 4-5 毫米)。进行了物理、机械和热特性分析,以确定复合材料的密度、弯曲模量、最大应力和热导率。根据得到的结果,得到的 RTPC 材料被认为是一种密度在 500 到 600 kg/m 3 之间的轻质材料。 RTPC 材料的热特性测试还表明,RTPC 是一种绝缘材料,导热系数在 0.22 至 0.23 W/mK 之间。另一方面,三点弯曲测试表明,RTPC 材料的弯曲性能较差。RTPC 材料可用作建筑施工领域的良好隔热材料。如果 RTPC 材料的机械性能得到改善,则可将其用作夹层结构中的结构部件,用于其他应用。
此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]