正如我们在科幻电影中不断看到的使用离子或电力推进进行星际太空旅行的情况一样,即使不是星际科学家也已经开始将这项技术视为星际技术的一种选择,它是高效燃料使用和电力的完美结合,它比任何其他技术都非常便宜和快捷。在物理学中,离子推进是航天器使用的一种电力推进。与任何传统的火箭推进方法一样,离子推进依赖于牛顿第三定律:每个作用都有一个相等和相反的反作用。典型的火箭发动机使用内部机制加速某种类型的废气远离火箭。由于这构成了废气上的力,发动机会受到相反方向的力。至关重要的是,推进需要损失质量
在给定压缩功的情况下提高总压力比的一种方法是引入带中间冷却的多级压缩,其中气体分阶段压缩并在每级之间通过使气体通过称为中间冷却器的热交换器进行冷却。航空航天工业中的燃气涡轮发动机需要高总压力比。为了实现更高的压力比,压缩机分为低压压缩机(LPC)和高压压缩机(HPC)。这样做是为了在LPC和HPC之间引入中间冷却器。压缩气体在LPC的出口处具有相对较高的温度。通过使用横流或逆流空对空热交换器,压缩空气在一侧流动,低温冲压空气在另一侧流动,压缩空气可以在进入HPC之前得到冷却。稳流压缩功或给定压缩功的压力比与压缩空气的比容成正比[8]。中间冷却器降低温度,从而降低压缩空气的比容,从而提高热力循环效率。在燃气涡轮发动机中,离开涡轮的废气温度通常比离开 HPC 的空气温度高得多。可以结合再生器或回热器,即横流或逆流热交换器,将热废气中的热量传递给压缩空气。因此,热效率提高,因为废气中应该被排放到周围环境中的部分能量被回收以预热进入燃烧室的空气。当使用中间冷却器时,回热器更有优势,因为存在更大的回热潜力。对于高总压力比,回热器并不有效,尤其是考虑到其成本、尺寸和重量。图 1 显示了概念草图,将不同燃气涡轮循环的热效率与总压力比进行比较。一般而言,中间冷却和回热燃气涡轮循环在相对较低的总压力比(例如小于 30)下有效。没有回热的中间冷却燃气涡轮循环仅在非常高的总压力比下有效。图 2 说明了中冷和回热燃气轮机循环。
II.全厂条件 设施名称:Keokuk Mills, LLC 许可证编号:04-TV-012R2-M001 许可证条件根据 567 爱荷华州行政法规第 22.108 条制定 ______________________________________________________________________________ 许可证期限 本许可证期限为:五 (5) 年 开始日期:2016 年 7 月 25 日 结束日期:2021 年 7 月 24 日 许可证的修订、修改和重新开放应根据 567 爱荷华州行政法规第 22.110 - 22.114 条获得。许可证可能会根据 567 爱荷华州行政法规第 22.115 条的规定暂停、终止或撤销。______________________________________________________________________________ 排放限制 除非排放点特定条件中另有规定,否则本工厂的所有排放点均适用以下限制和支持规定: 不透明度(可见排放):40% 不透明度 要求权限:567 IAC 23.3(2)“d” 二氧化硫 (SO 2 ):按体积计 500 ppm 要求权限:567 IAC 23.3(3)“e” 颗粒物 (PM) 任何人不得导致或允许任何来源的颗粒物 (PM) 排放超过本章规定的排放标准,但 567 – 第 24 章中规定的情况除外。对于 1999 年 7 月 21 日之后建造、改造或重建的来源,任何工艺产生的颗粒物 (PM) 排放量不得超过每干标准立方英尺废气 0.1 粒的排放标准,但 567 – 第 24 章中规定的情况除外。 567 – 21.2(455B)、23.1(455B)、23.4(455B) 和 567 – 第 24 章。对于 1999 年 7 月 21 日之前建造、改造或重建的源,任何工艺产生的颗粒物 (PM) 排放量不得超过表 I 确定的量,或许可证中规定的量(如果基于每标准立方英尺废气 0.1 粒的排放标准或根据 23.1(455B) 和 23.4(455B) 中规定的标准确定)。要求的权限:567 IAC 23.3(2)“a”
目前,RTFO 仅支持可再生来源的低碳燃料。燃料技术的发展现在使得先进的低碳燃料能够从化石衍生废物中开发出来——即所谓的再生碳燃料 (RCF)。再生碳燃料不同于可再生燃料,因为它们是由无法预防、再利用或回收的化石废物生产的,但与传统化石燃料相比仍有潜力减少温室气体排放。原料的例子包括城市固体废物 (MSW) 的化石部分(例如不可回收的塑料)和工业废气。再生碳燃料可以实现与 RTFO 已经支持的可再生燃料相当的碳节约,因此符合 RTFO 更广泛的政策意图——减少更难脱碳的运输方式的碳排放。
这些排放物的水平会根据飞行阶段而有所不同。在巡航阶段,由于海拔较高,乘客接触到的臭氧水平较高。颗粒物、SO2、NOX、CO2 和CO 是废气中最常见的物质,因此当飞机在地面并吸入这些污染空气时,这些物质的水平会较高。2010 年,伦敦希思罗机场所有飞机地面排放量中有 19% 来自 APU。该机场的空气质量战略承诺为飞机提供更多的预处理空气装置,以减少地面对 APU 的使用要求,进而降低这些污染物的水平。这些污染物包括挥发性有机化合物 (VOC) 和半挥发性有机化合物 (SVOC),特别是有机磷酸酯 (OP) 中的磷酸三甲苯酯 (TCP) 和磷酸三丁酯 (TBP)。
三菱重工环境化学工程有限公司 (MHIEC) 开发了 MaiDAS ®,这是用于废物转化能源 (WtE) 工厂的下一代基于 AI 的远程监控和运营支持系统。该系统可实现先进的自动化操作,同时保持工厂运行重要设备的正常运转,并优化蒸发量和废气浓度输出,同时消除与个别操作员相关的可变因素的影响。使用该系统可以实时预测低热值 (LHV)、废物进料量和燃烧条件等值。由系统控制的先进自动化操作可以大大减少人工干预。主蒸汽流量的稳定性也得到了确认。与该系统一起,已经开发的废物坑混合和进料支持系统的改进被认为可以实现稳定运行和降低成本,同时最大限度地提高 WtE 工厂的可持续性。
如果将一定量的空气(或任何其他气体)封闭在密闭容器中,然后加热,容器内的压力就会上升。如果容器的其中一面壁是可移动的,内部压力就会以一定的力量将该壁向外推,具体力量取决于被困气体中注入的热量。简而言之,这就是所有内燃机的工作原理:每个气缸都是一个密闭容器,每个活塞代表该容器的可移动壁;热量由燃料(通常是汽油)的燃烧提供,被困气体是燃烧后剩下的任何气态化合物的混合物。同时,发动机的其他运动部件只起到两种支持作用中的一种。“底端”将活塞的运动转化为旋转运动,并通过将它们返回到冲程的顶部,将密闭容器恢复到其原始大小;气门装置和“顶端”的其他所有装置都只是为了排出废气,并用新鲜的可燃混合物重新填充气缸。