航空母舰上飞机的拦阻动力学涉及绳索中瞬态波的传播过程和飞机的平稳减速过程。这给整个过程的模拟带来了很大的挑战,因为前者需要较小的时间步长来保证稳定性,而后者需要较大的时间步长来减少计算时间。针对这一问题,本文提出了一种采用变时间步长积分方案的拦阻装置系统全尺寸多体动力学模型。特别地,采用一种能够描述三维空间中任意大位移和转动的新型缆单元来网格化钢丝绳,并采用阻尼力来模拟液压系统的影响。然后,研究了着舰过程中钢丝绳的应力。结果表明,应力峰值主要来源于应力波在甲板滑轮间的传播、反射和叠加。偏离中心线着陆时的最大应力略小于沿中心线着陆时的最大应力。本文提出的多体进近和拦阻装置系统模型也为整个机构的设计和优化提供了一种有效的方法。
摘要——航空工业中使用的电子系统通常被概括为航空电子设备。大约七十年前,飞机上使用的第一批航空电子设备是基于旧仪表和模拟系统的导航和通信系统。从那时起,该行业已经发生了很大的发展,如今航空电子系统需要新的和更智能的功能,从而推动整个航空研究以指数级的速度向高级航空电子系统和架构发展。在本文中,对航空电子系统在不同发展阶段的成熟度进行了全面调查。在这个项目中,考虑了四个 LRU,每个 LRU 具有不同的输入参数和不同的采样时间。基于时间采样,数据数组被串行发送而没有任何时间延迟。一旦数据数组作为输出发送出去,它就会进入由数据集中器和推理器组成的嵌入式系统。数据在这里收集,然后通过数据总线发送到微控制器,最后输出显示在 PC 上。 Mathwork SIMULINK 可用于编码部分,算法通过 Simulink 模块集实现。根据提供给每个 LRU 的输入信号,在示波器模块集上查看输出。将输出与所需输出进行比较。
摘要 — 当今的量子计算机主要通过云访问,未来可能会转移到边缘网络。随着全球量子计算研究的快速发展和普及,对使用基于云的量子计算资源的需求大幅增加。这种需求凸显了为量子计算设计高效且适应性强的资源管理策略和服务模型的必要性。然而,量子资源的数量、质量和可访问性有限,对量子软件和系统的实际研究构成了重大挑战。为了应对这些挑战,我们提出了 iQuantum,这是一种首创的模拟工具包,可以模拟混合量子经典计算环境,用于原型设计和评估系统设计和调度算法。本文介绍了 iQuantum 的量子计算系统模型、架构设计、概念验证实现、潜在用例和未来发展。我们提出的 iQuantum 模拟器有望促进量子软件和系统的研究,特别是在集成边缘和云资源的量子计算环境中创建和评估资源管理、作业调度和混合量子-经典任务编排的策略和算法。索引术语 — 量子计算、量子云建模、模拟、混合量子计算、作业调度
摘要 _________________________________________________________________________ 本文介绍了一种用于太阳能槽式集热器 (PTC) 的新型电能存储 (EES) 接收器的数学建模。EES 接收器本质上是一个集热元件 (HCE),内置以热电池形式存储的装置,例如硫钠 (NaS)。本文介绍了描述接收器操作的概念设计和数学模型,以及模型验证的重要结果。在绝热条件下(模型有效性的主要指标),结果与已建立的美国国家可再生能源实验室 (NREL) 模型以及目前在现有 PTC 发电厂中使用的现有 SCHOTT PTR-70 和 Solel UVAC3 接收管的实验数据高度一致。 ___________________________________________________________________________ 关键词:储能、槽式集热器、PTC、发电厂、集热元件、HCE、热电池、硫钠、公用电网、NaS 电池
摘要 本文报告了使用 COMSOL Multiphysics 对一氧化碳气体传感器的模拟,其所用的活性传感材料是碳纳米复合材料(即 0.1 wt% 的单壁碳纳米管以及 PEDOT:PSS(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐))以 1:1 的等体积比。鉴于开发这些传感器的成本高昂,必须建立一个经济地预测其行为的数学模型。使用 COMSOL Multiphysics 进行模拟,通过高斯脉冲进料口引入浓度范围为 1 至 7 ppm 的一氧化碳气体来获得传感器的表面覆盖率。在给定的浓度范围内,可以实现 14% 至 32.94% 范围内的表面覆盖率,从而给出在给定时间内吸附到传感材料表面的气体分子量的信息。使用纳米复合材料可以增强传感器的表面覆盖率,从而提高传感器的灵敏度气体传感器。
美国国家航空航天局的“国家空域系统无人机系统集成”项目开发了一个分布式测试环境,可以评估向无人机飞行员提供的警报和指导。测试环境的基本要求是支持人在回路模拟以及实时飞机飞行测试。为了满足这两者,该项目利用实时、虚拟、建设性基础设施概念来提供通用的系统架构。与任何开发工作一样,在底层系统架构和设计方面做出了妥协,以实现快速原型设计和研究的开放性。但是,通过增量构建方法,实施了核心测试基础设施,以将在模拟下开发和测试的无人机检测和避免算法和显示概念以最少的修改迁移到飞行测试操作中。测试环境的分布式特性通过利用来自多个 NASA 中心和其他项目合作伙伴设施的模拟和飞行资产实现了高效测试。此外,使用标准的实时、虚拟、建设性功能支持与未来研究平台的集成。
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
作战测试与评估主任的战略计划、政策和新兴技术部门 (DOT&E SIPET) 正在制定未来多领域作战的测试与评估 (T&E)。我们的作战人员需要从海底到太空再到网络空间的综合视野来击败我们的对手并保卫我们的国家。由于环境、财政、安全、分类和道德方面的限制,不可能对这些能力进行全面的现场测试,因此我们的评估将更加依赖于建模和仿真 (M&S) 来测试我们系统的有效性和互操作性。特别是,测试和评估未来能力将取决于数据驱动的企业 M&S,该 M&S 是为士兵、水手、飞行员、警卫和海军陆战队员提供的服务。这种集成的、广泛的数字化 M&S 处于新技术前沿,有许多悬而未决的问题,例如:
在传统发电不切实际的地区,可再生能源已成为传统电能的主要替代品。近年来,光伏 (PV) 和风力发电急剧扩张。在本研究中,我们提出了一种混合能源系统,该系统结合了太阳能电池板和风力涡轮发电机,作为传统电能(如火力发电和水力发电)的替代品。为了在不断变化的环境条件下跟踪可从 PV 系统和风力涡轮发电机系统中提取最大功率的运行点,我们开发了一种简单且经济高效的控制技术。详细描述了完整的混合系统,并提供了全面的仿真结果来证明系统的实用性。在 MATLAB/Simulink 中开发了一个软件仿真模型来分析混合系统的性能和可行性
如今,M&S 在政府系统采购中的重要性日益凸显,但在设计过程中正确使用 M&S 所带来的潜在成本降低仍然远远低于实际部署成本。为什么国防部采购部门尚未实现这些大幅的成本降低?答案在于以下三个问题领域:工具无法互操作,即使没有决策要求,人员也参与其中,数字产品和流程模型没有标准。SBD 通过利用新兴标准和商业力量实现互操作性,通过部署协作软件环境基础设施,通过创建产品和流程模型的事实标准,为这些问题提供了解决方案。
