摘要:本文将新兴的混合型有源三次谐波电流注入变换器(H3C)应用于电池储能系统(BESS),形成一种新型的H3C-BESS结构。与常用的两级VSC-BESS相比,所提出的H3C-BESS能够减少无源元件和开关损耗。分析了H3C-BESS的工作原理,推导了其数学模型。针对系统的不同运行模式,提出了闭环控制策略和控制器设计,包括电池电流/电压控制和注入谐波电流控制。特别是,通过电网电流控制实现有源阻尼控制,无需无源阻尼电阻即可抑制LC滤波器谐振。仿真结果表明,所提出的拓扑结构及其控制策略具有快速的动态响应,建立时间小于4 ms。此外,电池电流和电网电流的总谐波畸变率分别仅为2.54%和3.15%。注入谐波电流的幅值仅为电网电流的一半,表明电流注入电路的损耗很小。实验结果验证了所提方案的有效性。
摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
与传统封装技术相比,将功率半导体器件嵌入印刷电路板 (PCB) 有几个好处。将半导体芯片集成到电路板中可减小转换器尺寸。这会使电流环路变短,从而降低互连电阻和寄生电感。由于传导和开关损耗降低,这两者都有助于提高系统级效率。此外,由于热阻低,使用厚铜基板可以有效散热。因此,十多年来,PCB 嵌入在电力电子界受到了广泛关注。本文旨在全面回顾该主题的科学文献,从基本制造技术到用于电气和热测试的模块或系统级演示器,再到可靠性研究。性能指标,例如换向环路电感 L σ、与芯片面积无关的热阻 R th × A chip ,可以比较不同的方法并与传统功率模块进行基准测试。一些出版物报告称,杂散电感低于 1 nH,并且与芯片面积无关的热阻在 20 ... 30 mm 2 K/W 范围内。
TMI3411 是一款 1.0MHz 恒定频率、电流模式降压转换器。它非常适合需要从单节锂离子电池获得高达 2A 的超高电流的便携式设备,同时在峰值负载条件下仍能实现超过 90% 的效率。TMI3411 还可以在 100% 占空比下运行,实现低压差操作,延长便携式系统的电池寿命,而轻负载操作可为噪声敏感应用提供非常低的输出纹波。TMI3411 可以从 2.5V 至 6V 的输入电压提供高达 2A 的输出负载电流,输出电压可以调节至低至 0.6V。高开关频率可最大限度地减小外部元件的尺寸,同时保持较低的开关损耗。内部斜率补偿设置允许设备以较小的电感值运行,以优化尺寸并提供高效的操作。TMI3411 采用 5 引脚 SOT 封装,并提供可调版本。该装置提供两种操作模式,PWM控制和PFM模式切换控制,可在更宽的负载范围内实现高效率。
摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
• 最大磁通密度:变压器尺寸和损耗对于满足规格至关重要。对于此标准,根据施加在初级侧的最大伏秒来评估最大磁通密度 B MAX。变压器内部的磁芯损耗与此参数直接相关,因此会影响变压器的设计(几何形状、磁芯材料等)。 • 电气应力:为了管理高输入电压,功率级需要高压功率开关。某些结构可以帮助降低施加在功率开关上的电压应力。它可以减小它们的尺寸并提高它们的性能,因为在硅集成环境中,没有多少功率开关可以承受 1 kV。 • ZVS:某些拓扑结构支持 ZVS(零电压开关)操作,可以减少开关损耗,这对于高压来说非常重要。然而,这种模式需要特别注意功率级的命令。 • 复杂性:为了减小功率级尺寸,一种选择是减少所需的组件数量及其尺寸。如果变压器尺寸已经由第一个标准描述,那么开关(MOSFET、二极管)、电容器等的数量也是功率级在电路板上所占空间的指示。这些元件的值和额定电压当然会影响它们的尺寸,也可以指示将它们集成到芯片中的可能性。• 其他标准也很重要,如启动、反馈回路、稳定性方法等,但这里不予考虑。
碳化硅 (SiC) MOSFET 凭借卓越的效率、可靠性和紧凑性,正在改变医疗设备的设计和功能。与标准的硅基功率器件不同,SiC MOSFET 具有增强的电气和热性能,包括更高的击穿电压、更低的开关损耗和更好的导热性。在医疗保健应用中,操作的准确性、能效和可靠性至关重要,这些特性非常重要。SiC MOSFET 可在 CT 和 MRI 扫描仪等医疗成像系统中提供更高的功率密度和更快的开关速度,从而提高图像质量并减小系统尺寸。可穿戴和便携式医疗设备的出色效率有助于缩小尺寸并延长电池寿命。此外,SiC MOSFET 可确保重症监护环境中的可靠性,从而提高手术器械、诊断器械和生命支持系统的效率。本文将讨论 SiC MOSFET 在改进医疗保健技术方面的重要性,以及它们与医疗保健相关的主要特性、现场应用及其对医疗保健系统的好处。随着医疗保健行业逐步采用复杂且能源密集型的技术,SiC MOSFET 有可能成为先进医疗电子产品的重要组成部分,从而推动临床和便携式护理解决方案的发展。
最近,许多文章和论文都大力宣传相移全桥拓扑的性能和优势,这是理所当然的。这种拓扑有效地利用了困扰电源设计人员数十年的那些臭名昭著的寄生元件。这种拓扑使设计人员能够充分利用变压器漏电感、MOSFET 输出电容和 MOSFET 体二极管,从而轻松地提高设计频率。这种拓扑还具有其他优势,例如在恒定开关频率下进行零电压开关,从而大大降低了开关损耗。这足以消除功率 MOSFET 的散热和/或允许使用更便宜的功率器件。降低 EMI 和 RFI 是额外的好处,因为与传统脉冲宽度调制 (PWM) 技术相比,电压和电流开关波形“更干净”,波形边缘切换更柔和。提高频率的能力最终将减小电源的整体尺寸并降低成本。使用此拓扑结构可以实现 1 兆赫及以上的操作。这确实是拓扑结构的重大进步。此设计的要求是全桥配置、辅助谐振操作的附加电感器以及由双二极管整流器和 LC 滤波器组成的输出结构。特殊热基板可能不是
摘要 — 单芯片双向脑机接口 (BBCI) 通过同时进行神经记录和刺激来实现神经调节。本文介绍了一种原型 BBCI 专用集成电路 (ASIC),该集成电路由 64 通道时分复用记录前端、面积优化的四通道高压兼容刺激器和支持同时进行多通道刺激伪影消除的电子设备组成。刺激器电源集成在芯片上,通过谐振电荷泵从低压电源提供 ± 11 V 的顺从电压。高频 (∼ 3 GHz) 自谐振时钟用于减少泵送电容器面积,同时抑制相关的开关损耗。基于 32 抽头最小均方 (LMS) 的数字自适应滤波器可实现 60 dB 的伪影抑制,从而实现同时进行神经刺激和记录。整个芯片采用 65 纳米低功耗 (LP) 工艺,占地 4 平方毫米,由 2.5/1.2 V 电源供电,记录时功耗为 205 µ W,刺激和消除后端功耗为 142 µ W。刺激输出驱动器在最大输出功率为 24 mW 时可实现 31% 的直流-直流效率。
碳化硅(SIC)MOSFET通过提供出色的效率,可靠性和紧凑性来改变医疗设备的设计和功能。尽管基于标准的硅电源设备,SIC MOSFET可提供增强的电气和热性能,包括更高的击穿电压,较低的开关损耗以及改善的导热率。在医疗保健应用中,准确性,能源效率和操作的可靠性至关重要,这些特征是极为重要的SIC MOSFET,可以提高功率密度,并提高医学成像系统(例如CT和MRI扫描仪)的开关速度,从而提高了图像质量和减少系统大小。可穿戴和便携式医疗设备的出色效率有助于缩小尺寸并延长电池寿命。此外,确保在重症监护环境中的可靠性,SIC MOSFET提高了手术,诊断工具和生命支持系统的仪器效率。在本文中介绍了SIC MOSFET在改善医疗保健技术方面的重要性,以及它们的主要特征,与医疗保健,现场的应用以及其与医疗保健系统的好处有关。SIC MOSFET有可能成为先进的医疗电子产品的基本要素,因为医疗保健行业逐渐融合了精致和能源密集型技术,因此可以在临床和便携式护理解决方案中发展。