现代量子化学方法涉及准确性和计算成本/复杂性之间的权衡。作为替代方案,深度学习方法被用作捷径,以较小的计算复杂性创建准确的预测。事实证明,此类模型在预测闭壳系统(其中所有电子都是成对的)方面非常有效。然而,尽管开壳系统(其中存在未配对电子)在描述自由基和反应中间体等物种方面非常重要,但很少有人关注它们。我们介绍了基于 OrbNet-Equi 的 OrbNet-Spin,这是一种几何和量子感知的深度学习模型,用于在电子结构级别表示化学系统。OrbNet-Spin 将自旋极化处理融入底层半经验量子力学轨道特征化中,并在保持几何约束的同时相应地调整模型架构。OrbNet-Spin 可以准确描述闭壳和开壳电子结构。我们使用开壳层卡宾的 QMSpin 数据集验证了 OrbNet-Spin 的性能,实现了单线态和三线态卡宾均低于化学精度的平均绝对误差。
2005 年报道了一种基于量子相位估计 (QPE) 的算法,可在多项式时间内解决全配置相互作用 (full-CI),该算法可以在所使用的基组内给出变分最佳波函数,但在经典计算机上求解的计算成本随着系统规模的增加而呈指数增加。3 2014 年提出了一种可在嘈杂的中等规模量子 (NISQ) 设备 4 上执行的量子 - 经典混合算法,称为变分量子特征求解器 (VQE)。5,6 此后,出现了许多关于通过改进量子算法 7 – 21 来降低计算成本并提高速度的报道,并且已经记录了使用各种量子设备 22 – 30 的相关实验演示。尽管量子计算机上的量子化学计算理论 (QCC-on-QCs) 取得了快速进展,但有效处理开壳层电子结构的方法仍处于起步阶段。开壳层系统在化学中无处不在。例如,有机双自由基可用作分子自旋量子计算机的原型 31,32、动态核极化 (DNP) 中的极化剂 32,33、有机发光材料 34,35 等等。开壳层多核过渡金属配合物经常作为反应中心参与酶的合成。36,37 单分子磁体作为分子存储装置已被广泛研究。38 为了揭示它们的电子结构,复杂的从头算量子化学计算是强大而必要的工具。然而,在携带自旋-b 不成对电子的开壳层系统中,波
摘要。红樱桃是落叶野生乔木,原产于中国,也用作观赏树。2018年至2023年3月下旬至12月,浙江省宁波市四明山(29°71'08”N,121°15'12”E)的红樱桃植株受到白粉病的严重危害。该病害每年3月下旬首次出现,特征是在幼叶近轴面出现白色、不规则的菌丝斑块。7月至8月,叶片受害部位的白粉病菌落消失,只剩下不规则的黄褐色斑点。9月病害再次发生,持续到12月下旬。12月在叶片上观察到含有子囊和子囊孢子的开壳囊。对开壳囊的形态分析表明病原菌为Podosphaera sp.。基于内部转录间隔区 (ITS) 区域 (引物 ITS4/ITS5) 的分子鉴定证实了病原菌为 Podosphaera prunigena 。接种试验证实了 Koch 法则,在接种的叶片组织中鉴定出相同的病原菌。本研究首次证实中国 P. rufoides 上的白粉病是由 P. prunigena 引起的。
1 牛津大学材料系,牛津,OX1 3PH,英国 2 德累斯顿先进电子中心(cfaed),德累斯顿工业大学化学与食品化学学院,德累斯顿,01069,德国 3 德累斯顿莱布尼茨聚合物研究所,德累斯顿,01069,德国 4 香港大学化学系和合成化学国家重点实验室,香港,中国 5 牛津大学无机化学系,牛津,OX1 3QR,英国 6 主要联系人 7 这些作者贡献相同 *通信地址:xinliang.feng@tu-dresden.de **通信地址:l apo.bogani@materials.ox.ac.uk 摘要 开壳层分子自由基可能是分子量子信息和量子传感技术的关键。它们的形态对量子特性的影响始终未知,阻碍了合成策略的发展。在此,我们使用基于间醌二甲烷的三种相关自由基建立了形态和量子特性之间的联系。我们揭示了π共轭骨架和侧基对自旋翻转和量子相干时间的作用。确定了温度区域,其中分子或溶剂的不同结构部分成为主要的退相干通道。在室温下获得的记录量子相干值仍然远低于自由基的固有极限,我们讨论了优化量子性能的方向。自由基,量子特性,电子顺磁共振,石墨烯。