我们发现,对于七个领域中的六个,我们分析的研究并未为开放基础模型的边际风险提供有说服力的证据:他们不考虑框架中的步骤,例如现有技术或防御能力如何适应边际风险。但是,对于与CSAM相关的风险,Thiel等人。(2023)3进行了完整的分析,该分析显示了未能令人满意解决的开放基础模型的边际风险。4为了提供指导,我们对自动网络安全脆弱性检测和NCII进行了初步的边际风险评估,我们发现,当前开放基础模型的边际风险较低,对于自动化脆弱性检测(部分是由于AI的有效性而用于防御的效率),而开放模型的开放型风险对NCII有可能。
● Goal: truly multi vendor solution ● Standardised open interfaces ● Vertical and horizontal disaggregation ● Three O-RAN Alliance RAN functions: O-RU, O-DU, O-CU (CP and UP) ● Other key elements: RIC and SMO ● O-RAN Alliance nomenclature for Cloud Platform: O-Cloud
4 天前 — 防卫省竞赛参与资格说明。19. 车辆租赁。大阪分局。J. R6.12.4~R6.12.8 2024 年 11 月......租赁项目、规格、数量。I. 汽车导航设备。U. ETC 车载装置。I. 车身......
开放式成像研究(OASIS)是一个旨在使大脑的磁共振成像(MRI)数据集的大脑数据集,可自由使用科学界。通过编译和自由分发MRI数据集,我们希望促进基本和临床神经科学中的未来发现。具体来说,OASIS项目旨在扮演许多角色。首先,绿洲图像和相关措施是持续科学探索的数据集。从整个成人寿命中从有或没有痴呆症的400多个个人获得的一组图像开始,选择了绿洲数据集,以鼓励对高兴趣主题进行研究,并提供对个别实验室难以获取的数据。第二,OASIS数据是研究人员创建和推动分析技术的目标。由于图像是从多个年龄和健康状况的受试者中获取的,因此绿洲数据可用于测试人类大脑各种景观各个范围内技术的鲁棒性和有效性。第三,绿洲数据可以用作相似分析技术的基准目标。标准图像证明了证明和对比方法的共同参考点。通过仔细筛选
请启用 JavaScript 以查看页面内容。您的支持 ID 是:8203161999611281366。这个问题是为了测试您是否是人类访问者并防止自动提交垃圾邮件。
通过ESA-Future Earth联合计划,邀请未来地球全球研究网络中的研究人员使用地球观察(EO)数据提出案例研究,以解决IPCC气候变化和城市的特别报告的研究主题,并针对低中度收入城市(LMIC)的城市进行了具体的重点。此公开通话旨在将EO数据应用于1)提前了解城市级别的气候影响和风险,或2)开发技术以监控适应性和/或缓解响应方案,以在城市规模上对气候变化和/或其联系。项目应确定与城市利益相关者相关的关键研发挑战,EO可以做出实质性的贡献,并在IPCC文献截止日期(2026年10月)之前提交期刊手稿。项目可以申请20,000欧元 - 30,000欧元的资金。提案的截止日期为2025年2月28日。
文本到图像生成模型正变得越来越流行,公众可以访问。由于这些模型看到大规模的部署,因此有必要深入研究其安全性和公平性,以免消散和永久存在任何形式的偏见。然而,存在的工作重点是检测封闭的偏见集,定义了先验的偏见,将研究限制为众所周知的概念。在本文中,我们解决了出现OpenBias的文本到图像生成模型中开放式偏见检测的挑战,该模型是一条新管道,该管道可识别和量化双质量的严重性,而无需访问任何预编译的集合。OpenBias有三个阶段。在第一阶段,我们利用大型语言模型(LLM)提出偏见,给定一组字幕。其次,目标生成模型使用相同的字幕绘制图像。最后,一个视觉问题回答模型认识到了先前提出的偏见的存在和范围。我们研究了稳定扩散1.5、2和XL强调新偏见的稳定扩散,从未研究过。通过定量实验,我们证明了OpenBias与当前的封闭式偏见检测方法和人类判断一致。
近年来,深度学习和基于人工智能的分子信息学发展迅猛。AlphaFold 的成功引发了人们对将深度学习应用于多个子领域的兴趣,包括合成化学的数字化转型、从科学文献中提取化学信息以及基于天然产物的药物发现中的人工智能。人工智能在分子信息学中的应用仍然受到这样一个事实的限制:用于训练和测试深度学习模型的大多数数据都不是 FAIR 和开放数据。随着开放科学实践越来越受欢迎,FAIR 数据运动、开放数据和开源软件等举措应运而生。对于分子信息学领域的研究人员来说,拥抱开放科学并提交支持其研究的数据和软件变得越来越重要。随着开源深度学习框架和云计算平台的出现,学术研究人员现在能够轻松部署和测试自己的深度学习算法。随着深度学习的新硬件和更快硬件的发展,以及数字研究数据管理基础设施的不断增加,以及促进开放数据、开源和开放科学的文化,人工智能驱动的分子信息学将继续发展。本综述探讨了分子信息学中开放数据和开放算法的现状,以及未来可以改进的方法。
自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E6 至 E7 等级之间。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且未提供说明备忘录的申请将被“取消资格”。
