摘要 为了建立一种系统的方法,用于分析俄罗斯海军核反应堆系统未来的扩散和环境影响,本文总结并分析了有关反应堆系统和核燃料设计特性的现有开源信息。指出了俄罗斯海军反应堆发展的最显著特点,并讨论了俄罗斯军用和民用反应堆系统和燃料之间的异同。附件一列出了所有使用核动力的俄罗斯舰艇的相关更新信息。本文的基本分析划分为舰艇代数(第一代至第三代)和反应堆类型(压水反应堆和 LMC 技术)。大多数可用信息与核破冰船有关。对这些信息进行了系统分析,以确定俄罗斯民用海军核反应堆的发展阶段。讨论了三种不同的反应堆模型:OK-150、OK-900 和 KLT-40,以及它们的几个版本。关于军用反应堆,无法确定单个反应堆模型的特征,因此基本划分遵循船舶代数 - 第一代到第三代。然而,从现有信息来看,可以确定潜艇设计(特别是第一代和第二代)的主要路线。结论包含对结果可能产生的影响的讨论,以及对进一步工作的建议。Key words submarines, icebreakers, Russia, design, marine reactors, naval reactors, OK- 150, OK-900, KLT-40 NKS-138 ISBN 87-7893-200-9 Electronic report, April 2006 The report can be obtained from NKS Secretariat NKS-775 P.O.Box 49 DK - 4000 Roskilde, Denmark Phone +45 4677 4045 Fax +45 4677 4046
摘要 我们之前已经表明,尽管表现相似,但聋哑手语者在进行简单算术时调动的大脑区域与一组听力正常的非手语者有所不同。具体而言,听力正常的个体在与数字处理的言语系统相关的大脑区域(即左侧角回和额下回)中表现出更广泛的激活,而聋哑个体则调动与数字处理的数量系统相关的大脑区域(即右侧水平顶内沟)。这表明,与听力正常的非手语者相比,聋哑手语者在进行简单算术时可以成功利用位于部分不同大脑区域的过程。本研究是上述研究的概念复制和扩展,主要目的是了解聋哑人和听力正常的个体在支持算术的神经相关性方面的异同。主要目标是研究右侧水平顶内回、左侧下额回、海马体和左侧角回在简单和困难算术中的作用,以及这些区域如何相互连接。第二个目标是探索哪些其他大脑区域支持聋哑手语者的算术。多达 34 名成年聋哑手语者和相同数量的听力正常非手语者将参加一项简单和困难减法和乘法的 fMRI 研究。将使用全脑分析、兴趣区域分析和连接分析来分析脑成像数据。这是首次研究聋哑人士不同难度算术的神经基础。
摘要 针对不同人群,无论是否患有慢性疾病或残疾,都需要制定身体活动指南,以满足不同人群的不同功能和生理需求,从而实现最佳健康效益。随着身体活动指南在促进最佳健康和福祉方面的重要性越来越受到重视,迫切需要对其进行系统评估,以确保其仍然有效、适用并与不断发展的健康需求和科学见解保持一致。本研究旨在系统地回顾、批判性地评估和比较全球身体活动和久坐行为指南,包括成人、孕妇和产后妇女以及患有慢性疾病和/或残疾人士的运动频率、强度、时间和运动类型。我们遵循系统评价和荟萃分析协议的首选报告项目清单。我们将搜索 2010 年至 2024 年 10 月之间的联合和补充医学数据库、APA PsycInfo、护理和相关健康文献累积索引、Cochrane 图书馆、教育资源信息中心、Google Scholar、MEDLINE、PubMed、Scopus、SPORTDiscus、Web of Science 和灰色文献数据库。两位审阅者将独立选择指南、提取数据并使用研究和评估指南评估 II 工具评估方法学质量。主要建议将根据既定标准进行总结并归类为“强”和“有条件”。对当前指南的全面评估将确定它们的异同,并揭示它们在实际环境中的相关性。研究结果将指导医疗保健专业人员、研究人员和政策制定者实施基于证据的建议,以管理目标人群的身体活动和久坐行为。
为了寻找控制 COVID-19 大流行的有效解决方案,科学界投入了前所未有的努力来开发针对该疾病的疫苗,来自多个国家的制药公司和科研机构参与其中。世界密切关注该领域的研究,特别是通过媒体报道,这在传播可信信息以及公众对科学和健康的理解方面发挥着关键作用。另一方面,反疫苗运动在这种传播环境中争夺空间,这引起了当局对民众接种疫苗意愿的担忧。在这项探索性研究中,我们使用了计算机辅助内容分析技术和 WordStat 软件,确定了 2020 年 1 月至 10 月《纽约时报》(美国)、《卫报》(英国)和《圣保罗页报》(巴西)发表的 716 篇有关 COVID-19 疫苗的文章的正文和标题中出现最多的术语、语义集群、参与者、机构和国家。我们试图分析那些政府领导人持否定科学立场的国家之间的异同,以反映这些地方疫情的严重程度。结果表明,每家报纸都强调了本国实验室开发的潜在疫苗或与国家机构建立了伙伴关系的潜在疫苗,但巴西的报道方式更政治化,而美国和英国的报道方式则更偏向技术科学。在对外问题上,各报将疫苗研发视为一场竞赛,美国、欧洲、中国和俄罗斯等历史上存在经济、政治和意识形态冲突的国家和集团正在相互竞争。结果让我们反思媒体的责任,不仅要正确报道,还要避免制造与疫苗来源有关的污名,并打击虚假信息。
摘要 摘要 氢气是一种低碳清洁能源,生产来源广泛,大力发展氢能产业是实现双碳目标、应对全球能源转型的重要举措。在氢能“制备—储存—运输—应用”全产业链中,氢气存储难度大一直是制约氢能产业高质量发展的因素。盐穴储氢具有成本低、规模大、安全性高、储氢纯度高等突出优势,是未来大规模储氢的重要发展方向,也是我国低碳能源转型的重大战略需求。全面调研了我国制氢产业和氢能消费现状,进一步分析了我国盐穴储氢需求,调研了国外利用盐穴储存天然气和氢气的技术和工程现状,总结了我国盐穴储氢的发展和建设历史。对比了盐穴储氢技术在天然气、氦气、压缩空气、氢气储藏中的异同,提出了我国盐穴储氢技术面临的三大科技难题:层状盐岩中的氢气渗流与生物化学反应、盐穴储氢井筒完整性控制、储氢群灾害孕育与防治,明确了储氢需求快速增长的趋势和我国大型盐穴储氢技术的重点研究方向。
课程描述 密歇根大学 课程日历 描述 检查和分析可持续草原种植系统。重点放在优化轮作效益、整合作物和牲畜、保护土壤和水资源以及增强生物多样性的系统上。将讨论草原和世界其他地区的现有、历史和新兴作物生产系统。包括通过农场采访和/或实地考察和/或客座演讲进行体验式学习。不能与 PLNT 3510 一起举行。先决条件:PLNT 2500 (D)。 一般课程描述 本课程是农学课程的顶点课程。它教你从系统的角度思考农业。它整合了你在学位期间学到的信息,并侧重于学习如何使用这些知识来解决农学问题。本课程将让您更广泛地了解草原种植系统从过去到现在的演变并展望未来。这是一门侧重于综合信息的“大局”课程。您将以不同于以前的许多课程的方式学习内容和技能。在以前的农学课程中,您可能重点关注以下内容:• 成功种植小麦作物的步骤,• 除草的物理、化学和生物方法,• 疾病周期以及如何通过打破最薄弱的环节来控制害虫,• 施肥形式和速率以优化油菜籽产量,• 土壤管理实践以最大限度地减少土壤侵蚀本课程重点学习如何将这些信息联系在一起,以识别和评估作为更大种植系统的一部分的各个部分。您将使用在整个学位课程中收集的知识和观察技能来了解周围的世界。您将练习对农学问题做出明智的决定。您将被要求质疑我们目前对农业的假设,并考虑它在未来可能会如何变化。我们将根据您描述和定义农业系统、对比异同、综合信息、进行观察和解决问题的能力对您进行评估。
2024 年 6 月 21 日作者:斯宾塞·托布勒中士 第 374 空运联队公共事务部 第 374 工程兵中队的应急管理排于 6 月 6 日和 11 日在日本横田空军基地接待了日本航空自卫队和日本陆上自卫队的成员,进行双边应急管理培训。 培训涵盖了广泛的化学、生物、放射和核主题,包括危险材料讲座、适合任务的防护装备实践培训和净化程序。 第 374 工程兵中队指挥官迈克尔·普卢格 (Michael Plueger) 中校表示:“这些训练演习的目的是建立与日本盟友的关系,让我们熟悉彼此的装备、战术、技术和程序,并最终实现联合行动。” 6月6日,航空自卫队作战系统作战中队的成员参加了CBRN响应课程,学习了应急管理的基础知识。航空自卫队人员在模拟训练中使用了自己的个人防护装备(PPE)。 “这是他们第一次使用我们自己的个人防护装备进行实际操作培训,”第 374 土木工程中队应急管理联络官 Yukihide Hirano 解释道。“这是我们分享知识并向他们展示美国空军如何处理 CBRN 响应的机会。” 6月11日,日本陆上自卫队练马驻地化学防御队成员访问横田空军基地,进行双边及专家交流。第374工程兵团和日本陆上自卫队都进行了实战训练,以识别污染区域、在污染区域周围设置警戒线并进行净化训练。他们还讨论了每台设备之间的异同,回顾了其功能,并讨论了改进方法。 双边训练体现了我们加强与盟军关系的决心,促进地区安全,并帮助部队做好准备,以便在必要时迅速取得成果。 “太平洋和平是我们共同的愿望,”普弗鲁格说。“为了维护和平,我们必须遏制战争。我们必须向该地区的潜在对手证明,我们有能力应对他们可能考虑的任何类型袭击。”
构建能够从多种感官输入(例如文本、语音、视频、现实世界的传感器、可穿戴设备和医疗数据)中学习的多感官人工智能系统有望对许多科学领域产生影响并带来实际好处,例如支持人类健康和福祉、实现多媒体内容处理以及增强现实世界的自主代理。然而,多模态研究进展的广度使得很难确定该领域的共同主题和悬而未决的问题。通过综合一系列理论框架和应用领域,本论文旨在推进多模态机器学习的基础。我们首先定义多模态问题中经常出现的三个关键原则:模态异质性、连接和交互[371]。以这些原则为基础,我们提出了多模态研究中六个核心挑战的分类:表示、对齐、推理、生成、转移和量化。我们将通过这种分类法介绍最新的技术成果,使研究人员能够了解不同方法之间的异同,并确定未来研究的开放问题。本论文的主要内容涵盖了我们在解决多模态学习中的两个关键问题方面的最新进展:多模态交互的机器学习基础,以及构建可推广到现实世界中许多模态和任务的多感官基础模型的实用方法。在第一部分,我们研究多模态交互的基础:模态如何结合起来为某项任务产生新信息的基本原理。我们提出了一个理论框架,形式化了模态如何相互作用从而为某项任务产生新信息,例如从口语单词和声音表达之间的不一致中识别出的讽刺 [372]。利用这个理论框架,我们提出了两个实用的估计量来量化现实世界数据集中的交互。量化多模态任务所需的交互类型,使研究人员能够决定收集哪种模态[376],设计合适的方法来学习这些交互[374],并分析他们的模型是否成功学习[375]。在第二部分中,我们研究了实用的多模态基础模型的设计,这些模型可以推广到许多模态和任务,这为将大型语言模型应用到现实世界的感知模态迈出了一步。我们首先介绍 M ULTI B ENCH,这是一个统一的大规模基准,涵盖了广泛的模态、任务和研究领域[367]。我们还将介绍跨模态注意[101,359]和多模态变换器[613]架构,它们现在是许多当今多模态基础模型的基础。在 M ULTI B ENCH 上扩展这些架构,可以创建跨各种任务的通用多模态多任务模型,我们与实践者进行了广泛合作,将这些模型应用于情感计算、心理健康和癌症预后等现实世界的影响。我们通过讨论未来的工作如何利用这些想法实现更通用、互动性更强、更安全的多模态人工智能来结束这篇论文。
表 1. 有关环境和社会参数的主要国家立法 ...................................................................................................................... 21 表 2. 与许可程序相关的法律 ................................................................................................................................................ 37 表 3. 欧洲复兴开发银行的项目影响报告书 ............................................................................................................................................. 41 表 4. 环境和社会影响评估与塞尔维亚环境影响评估流程之间的异同 ............................................................................................. 43 表 5. 贝尔格莱德 - 尼什铁路线的拟议分段 ............................................................................................................. 49 表 6. 桥梁和桥梁结构 ................................................................................................................................................ 53 表 7. 车站数量和位置 ................................................................................................................................................ 53 表 8. 相关设施信息 ................................................................................................................................................ 59 表 9. 主要标准及加权系数 ............................................................................................................................................. 63 表 10. 各方案对人口的社会影响 ................................................................................................................................ 64 表 11. 各方案的平均噪音影响,考虑了较大的定居点................................................................................................................................ 65 表 12. 三种方案影响概览................................................................................................................................... 66 表 13. 平均二氧化碳排放量,以每客公里和每吨公里计算......................................................................................................................... 68 表 14. 最终选定的标准集......................................................................................................................................................... 68 表 15. 所有替代方案按每个子标准给出的数值.................................................................................................................... 69 表 16. 替代方案比较......................................................................................................................................................... 71 表 17. 替代方案比较......................................................................................................................................................... 73 表 18. 替代方案比较............................................................................................................................................................................. 74 表 19. 替代方案比较 ................................................................................................................................................ 76 表 20. 剖面 Obrež-Ratare, PD 182 的地下水位 ...................................................................................................... 107 表 21. 剖面 Varvarin-Ćićevac, PL-191 的地下水位 ............................................................................................. 107 表 22. 剖面 Striža-new, 951А 的地下水位 ............................................................................................................. 107 表 23. 剖面 Žitkovac-RO Moravica, 505 的地下水位 ............................................................................................. 108 表 24. 剖面 Bobovište, 500 的地下水位 ............................................................................................................. 108 表 25. 剖面 mramor 的地下水位 ............................................................................................................................. 108 表 26. 保护区 - 地下水卫生保护区概览来源...................................................................................................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量(Qavg)值概览 ...................................................................................................................................................................................... 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位(havg)值概览 ............................................................................................................................................................................. 120 表 29. 水分类 ...................................................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121